精英家教网 > 高中数学 > 题目详情
9.一火车锅炉每小时煤的消耗费用与火车行驶速度的立方成正比,已知当速度为20km/h时,每小时消耗的煤价值40元,其他费用每小时需400元,火车的最高速度为100km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?

分析 设火车的速度为xkm/h,甲、乙两城距离为akm,由40=k•203,求得k,总费用$f(x)=(k{x^3}+400)•\frac{a}{x}$,求得导数,求出单调区间,即可得到极小值,也为最小值.

解答 解:设火车的速度为xkm/h,甲、乙两城距离为akm.
由题意,令40=k•203,∴$k=\frac{1}{200}$,
则总费用$f(x)=(k{x^3}+400)•\frac{a}{x}$=$a(k{x^2}+\frac{400}{x})=a(\frac{1}{200}{x^2}+\frac{400}{x})(0<x≤100)$.
由$f'(x)=\frac{{a({x^3}-40000)}}{{100{x^2}}}=0$,得$x=20\;\root{3}{5}$.
当$0<x<20\;\root{3}{5}$时,f'(x)<0,当20$\root{3}{5}$<x<100时,f′(x)>0,
∴当$x=20\;\root{3}{5}$时,f(x)取最小值,
即速度为$20\;\root{3}{5}$km/h时,总费用最少.

点评 本题考查导数在最值问题中的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求下列函数的定义域、值域:
(1)y=($\frac{2}{3}$) -|x|
(2)y=2${\;}^{\frac{1}{x-2}}$
(3)y=4x+2x+1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a=(lg3)2,b=30.3,c=lg$\sqrt{3}$,则(  )
A.a<c<bB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果质点A按规律s=3t2运动,则在t=2时的瞬时速度是(  )
A.4B.6C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合$A=\{x|x>0\},B=\{x|\frac{1}{2}<{2^x}<4\}$,则A∩∁RB=(  )
A.{x|x>0}B.{x|0<x<2}C.{x|x≥2}D.{x|x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-$\frac{1}{2}$ax2-2x+b(a,b∈R).
(I)若函数f(z)的图象在点(1,f(1))处的切线方程为x-y+2=0,求a,b的值;
(Ⅱ)若f(x)在区间(0,2〕上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已数列{an}满足a1=1,an+1-$\frac{1}{2}$an=$\frac{1}{{2}^{n}}$,bn=$\frac{1}{tan\frac{{a}_{n}}{{n}^{2}}}$•Sn是数列{bn}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证;对任意n∈N*.Sn<(n-1)•2n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平面上四点:A(4,3),B(5,2),C(1,0),D(2,3)
(1)证明:A、B、C、D四点共圆;
(2)已知点N是(1)中圆上的一个动点,点P(6,0),点Q(x,y)是线段PN的三等分点且距点P近一些,求点Q的坐标满足的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知过点F(0,1),且斜率为k的直线l与抛物线E:x2=4y相交于A,B两点,与圆F:x2+(y-1)2=1相交于C,D两点,其中,点A,C在第一象限.
(1)求|AC|×|BD|的值;
(2)过点C作圆F的切线l,当$\frac{\sqrt{2}}{4}$≤k≤$\frac{\sqrt{3}}{3}$时,求直线l1在y轴上的截距的取值范围.

查看答案和解析>>

同步练习册答案