精英家教网 > 高中数学 > 题目详情

【题目】如图是某单位职工的月收入情况画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息,解答下列问题.

(1)为了分析职工的收入与年龄、学历等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这组中应抽取多少人?

(2)试估计样本数据的中位数与平均数.

【答案】(1)20(2)17750,1962.5

【解析】

(1)先求得月收入在[1000,1500)的频率,即可得到样本容量,求得月收入在[1 500,2 000)的人数,根据分层抽样求得答案;

(2)利用中位数的公式求得中位数,再根据概率和为1求得月收入在[3000,3500)的频率,再利用平均数公式求得结果.

(1)由题知,月收入在[1000,1500)的频率为0.0008×500=0.4,

又月收入在[1000,1500)的有4 000人,故样本容量n10000.

又月收入在[1500,2000)的频率为0.000 4×500=0.2,

月收入在[1 500,2 000)的人数为0.2×10000=2 000,

从10 000人中用分层抽样的方法抽出100人,

则月收入在[1500,2000)的这组中应抽取100×=20(人).

(2)月收入在[1000,2000)的频率为0.4+0.2=0.6>0.5,

故样本数据的中位数为1500+=1500+250=1750.

由频率分布直方图可知, 月收入在[3000,3500)的频率为

故样本数据的平均数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=1-a0a≠1)是定义在(-∞+∞)上的奇函数.

1)求a的值;

2)证明:函数fx)在定义域(-∞+∞)内是增函数;

3)当x∈(01]时,tfx≥2x-2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取学生的数学成绩,制成表所示的频率分布.

组号

分组

频数

频率

第一组

第二组

第三组

第四

第五组

合计

(1)值;

(2)若从第三、四、五中用分层抽样方法抽取学生,在这学生中随机抽取学生与张老师面谈求第三组中至少有学生与张老师面谈的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为(
A.144
B.120
C.72
D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点(为自然对数的底数).

(Ⅰ)求实数的取值范围;

(Ⅱ)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AB=11,AD=7,AA1=12.一质点从顶点A射向点E(4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i﹣1次到第i次反射点之间的线段记为li(i=2,3,4),l1=AE,将线段l1 , l2 , l3 , l4竖直放置在同一水平线上,则大致的图形是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为abcacosBbcosA

(1)求 的值

(2)若sin A,求sin(C) 的值.

查看答案和解析>>

同步练习册答案