精英家教网 > 高中数学 > 题目详情
3.已知$α∈(0,\frac{π}{2}),β∈(\frac{π}{2},π)$,且$cosα=\frac{3}{5}$,$sinβ=\frac{{\sqrt{2}}}{10}$,求cos(α+β)的值.

分析 由已知利用同角三角函数基本关系式可求cosβ,sinα的值,进而利用两角和的余弦函数公式即可计算得解.

解答 解:∵$α∈(0,\frac{π}{2}),β∈(\frac{π}{2},π)$,且$cosα=\frac{3}{5}$,$sinβ=\frac{{\sqrt{2}}}{10}$,
∴由条件可知,$cosβ=-\frac{{7\sqrt{2}}}{10}$,$sinα=\frac{4}{5}$,
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{3}{5}×(-\frac{7\sqrt{2}}{10})$-$\frac{4}{5}×\frac{\sqrt{2}}{10}$=$-\frac{{\sqrt{2}}}{2}$.

点评 本题主要考查了同角三角函数基本关系式,两角和的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=f(x)在x=x0处的导数f′(x0)的几何意义是(  )
A.在点x0处的斜率
B.在点(x0,f(x0))处的切线与x轴所夹的锐角的正切值
C.曲线y=f(x)在点(x0,f(x0))处切线的斜率
D.点(x0,f(x0))与点(0,0)连线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前项和为Sn,且满足3Sn=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=(n+1)an,求数列{bn}的前项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.欧拉(LeonhardEuler,国籍瑞士)是科学史上最多产的一位杰出的数学家,他发明的公式eix=cosx+isinx(i为虚数单位),将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,这个公式在复变函数理论中占有非常重要的地位,被誉为“数学中的天桥”.根据此公式可知,表示的复数${e^{\frac{2π}{3}i}}$在复平面内位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知m是两个正数2,8的等比中项,则圆锥曲线${x^2}+\frac{y^2}{m}=1$的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$或$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{5}$D.$\frac{{\sqrt{3}}}{2}$或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的焦距为6,在x轴上的一个焦点F与短轴两端点的连线互相垂直.
(1)求椭圆的标准方程;
(2)设直线$y=\frac{1}{2}x+1$与椭圆相交于A.B.求△ABF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a=${log_{\frac{1}{3}}}$2,b=${log_{\frac{1}{2}}}\frac{1}{3}$,c=${(\frac{1}{2})^{0.3}}$,则(  )
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.{an}是a1=2,d=2的等差数列,其前n项和公式为(  )
A.Sn=n2-nB.Sn=n2-2nC.Sn=n2+nD.Sn=n2+2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过x轴下方的一动点P作抛物线C:x2=2y的两切线,切点分别为A,B,若直线AB到圆x2+y2=1相切,则点P的轨迹方程为(  )
A.y2-x2=1(y<0)B.(y+2)2+x2=1C.${x^2}+\frac{y^2}{4}=1(y<0)$D.x2=-y-1

查看答案和解析>>

同步练习册答案