精英家教网 > 高中数学 > 题目详情

设AB是过椭圆=1的一个焦点F的弦,若AB的倾斜角为,求弦AB的长.

答案:
解析:

  略解 由c=1,不妨设F(1,0),由

-30x-5=0.

  ∴|AB|=


练习册系列答案
相关习题

科目:高中数学 来源:全优设计选修数学-1-1苏教版 苏教版 题型:044

如图所示,A为椭圆=1(a>b0)上的一个动点,弦AB、AC分别过焦点F1、F2.当AC垂直于x轴时,恰好AF1∶AF2=3∶1.

(1)求该椭圆的离心率;

(2)设,试判断λ1+λ2是否为定值?若是,则求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试(山东卷)、数学(文科) 题型:044

已知曲线所围成的封闭图形的面积为,曲线C1的内切圆半径为.记C2为以曲线C1与坐标轴的交点为顶点的椭圆.

(Ⅰ)求椭圆C2的标准方程;

(Ⅱ)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.

(1)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;

(2)若M是l与椭圆C2的交点,求△AMB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:重庆市八中2010届高三4月月考文科数学试题 题型:044

已知A,B,C均在椭圆上,直线AB、AC分别过椭圆的左右焦点F1、F2,当时,有

(Ⅰ)求椭圆M的方程;

(Ⅱ)设P是椭圆M上的任一点,EF为圆N:x2+(y-2)2=1的任一条直径,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

A(x1y1),B(x2y2)是椭圆=1(a>b>0)上的两点,已知向量

m·n=0且椭圆的离心率e,短轴长为2,O为坐标原点.

(1)求椭圆的方程;

(2)若直线AB的斜率存在且直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值;

(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案