精英家教网 > 高中数学 > 题目详情
(2010•济宁一模)以抛物线y2=20x的焦点为圆心,且与双曲线
x2
16
-
y2
9
=1
的两条渐近线都相切的圆的方程为(  )
分析:根据抛物线的标准方程 求出圆心,利用点到直线的距离公式求得半径,从而得到所求的圆的方程.
解答:解:∵抛物线y2=20x的焦点F(5,0),
∴所求的圆的圆心(5,0)
∵双曲线
x2
16
-
y2
9
=1
的两条渐近线分别为3x±4y=0
∴圆心(5,0)到直线3x±4y=0的距离即为所求圆的半径R
∴R=
15
5
=3
所以圆方程((x-5)2+y2=9,即x2+y2-10x+16=0
故选C
点评:本题考抛物线的标准方程,以及双曲线的简单性质的应用,点到直线的距离公式,圆的标准方程,求半径是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•济宁一模)观察图:则第
1005
1005
行的各数之和等于20092

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•济宁一模)已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=
3
2
,P
为椭圆上一动点,F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为
3

(1)求椭圆C1的方程;
(2)设椭圆短轴的上端点为A、M为动点,且
1
5
|
F2A
|2
1
2
F2M
AM
AF1
OM
成等差数列,求动点M的轨迹C2的方程;
(3)过点M作C2的切线l交于C1与Q、R两点,求证:
OQ
OR
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•济宁一模)ABCD为矩形,AB=3,BC=1,O为AB的中点,在矩形ABCD内随机取一点P,点P到点O的距离大于1的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•济宁一模)某地区为了解中学生的日平均睡眠时间(单位:h),随机选择了n位中学生进行调查,根据所得数据画出样本的频率分布直方图如图所示,且从左到右的第1个、第4个、第2个、第3个小长方形的面积依次构成公差为0.1的等差数列,又第一小组的频数是10,则n=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•济宁一模)如果关于x的不等式|x-a|+|x+4|≥1的解集是全体实数,则实数a的取值范围是(  )

查看答案和解析>>

同步练习册答案