精英家教网 > 高中数学 > 题目详情

【题目】下列事件A,B是独立事件的是(  )

A. 一枚硬币掷两次,A=“第一次为正面向上”,B=“第二次为反面向上”

B. 袋中有两个白球和两个黑球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”

C. 掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”

D. A=“人能活到20岁”,B=“人能活到50岁”

【答案】A

【解析】

利用相互独立事件的概念,对四个选项逐一分析排除,从而得出正确选项.

对于A选项,两个事件发生,没有关系,故是相互独立事件.对于B选项,事件发生时,影响到事件,故不是相互独立事件.对于C选项,由于投的是一个骰子,是对立事件,所以不是相互独立事件.对于D选项,能活到岁的,可能也能活到岁,故不是相互独立事件.综上所述,本小题选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现将某校高二年级某班的学业水平测试数学成绩分为五组,绘制而成的茎叶图、频率分布直方图如下,由于工作疏忽,茎叶图有部分被损坏,频率分布直方图也不完整,请据此解答如下问题:(注:该班同学数学成绩均在区间内)

1)将频率分布直方图补充完整.

2)该班希望组建两个数学学习互助小组,班上数学成绩最好的两位同学分别担任两组组长,将此次成绩低于60分的同学作为组员平均分到两组,即每组有一名组长和两名成绩低60分的组员,求此次考试成绩为52分、54分和98分的三名同学分到同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)设,若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公差不为零的等差数列中,成等比数列,且该数列的前10项和为100,数列的前n项和为,且满足

求数列的通项公式;

,数列的前n项和为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项为1..

1)若为常数列,求的值:

2)若为公比为2的等比数列,求的解析式:

3)是否存在等差数列,使得对一切都成立?若存在,求出数列的通项公式:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值

1)求的解析式;

2)若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有10个除颜色外完全一样的黑球和白球,已知从袋中任意摸出2个球,至少得到1个白球的概率是.

1)求白球的个数;

2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第七届世界军人运动会(7th CISM Military World Games) ,简称"武汉军运会”,于2019年10月18日至27日在中国武汉举行,共设置射击、游泳、田径篮球等27个大项、329个小项.来自100多个国家的近万名现役军人同台竞技.会议期间,某公司欲采购海南某水果种植基地的水果,公司王总经理与该种植基地的负责人张老板商定一次性采购一种水果的采购价(千元/吨)与采购量(吨)之间的函数关系的图象如图中的折线所示(不包含端点,但包含端点).

(1)求之间的函数关系式;

(2)已知该水果种植基地种植该水果的成本是8千元/吨,那么王总经理的采购量为多少时,该水果基地在这次买卖中所获得利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知为三个不同的定点.以原点为圆心的圆与线段都相切.

(Ⅰ)求圆的方程及的值;

(Ⅱ)若直线与圆相交于两点,且,求的值;

(Ⅲ)在直线上是否存在异于的定点,使得对圆上任意一点,都有为常数?若存在,求出点的坐标及的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案