【题目】在正方体中,棱长为2,分别为棱的中点,为底面正方形内一点(含边界)且与面所成角的正切值为,直线与面的交点为,当到的距离最小时,则四面体外接球的表面积为___________.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),为曲线上一动点,动点满足.
(1)求点轨迹的直角坐标方程;
(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,是上一个动点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线C2的直角坐标方程为.
(1)若直线l与曲线C1交于M、N两点,求线段MN的长度;
(2)若直线l与x轴,y轴分别交于A、B两点,点P在曲线C2上,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),an=an+b(n∈N*).
(1)求{an};
(2)设数列{an}的前n项和为Sn,bn,求{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,,,,过点作平面的垂线,垂足为与的交点,是线段的中点.
(1)求证:DE//平面;
(2)若四棱锥的体积为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为迎接“618年中庆典,拟推出促销活动,活动规则如下:①活动期间凡在商场内购物,每满673元可参与一次现金红包抽奖,且互不影响,详细如下表:
奖项 | 一等奖 | 二等奖 |
奖金 | 200元现金红包 | 优惠餐券1张(价值50元) |
获奖率 | 30% | 70% |
②活动期间凡在商场内购物,每满2019元可参与消费返现,返现金额为实际消费金额的15%.规定每位顾客只可选择参加其中一种优惠活动.
(1)现有顾客甲在商场消费2019元,若其选择参与抽奖,求其可以获得现金红包的概率.
(2)现有100名消费金额为2019元的顾客正在等待抽奖,假如你是该商场的活动策划人,你更希望顾客参与哪项优惠活动?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对数列,规定为数列的一阶差分数列,其中,规定为的二阶差分数列,其中.
(1)数列的通项公式,试判断,是否为等差数列,请说明理由?
(2)数列是公比为的正项等比数列,且,对于任意的,都存在,使得,求所有可能的取值构成的集合;
(3)各项均为正数的数列的前项和为,且,对满足,的任意正整数、、,都有,且不等式恒成立,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业拟对某条生产线进行技术升级,现有两种方案可供选择:方案是报废原有生产线,重建一条新的生产线;方案是对原有生产线进行技术改造.由于受诸多不可控因素的影响,市场销售状态可能会发生变化.该企业管理者对历年产品销售市场行情及回报率进行了调研,编制出下表:
市场销售状态 | 畅销 | 平销 | 滞销 | |
市场销售状态概率 | ||||
预期平均年利润(单位:万元) | 方案 | 700 | 400 | |
方案 | 600 | 300 |
(1)以预期平均年利润的期望值为决策依据,问:该企业应选择哪种方案?
(2)记该生产线升级后的产品(以下简称“新产品”)的年产量为(万件),通过核算,实行方案时新产品的年度总成本(万元)为,实行方案时新产品的年度总成本(万元)为.已知,.若按(1)的标准选择方案,则市场行情为畅销、平销和滞销时,新产品的单价(元)分别为60,,,且生产的新产品当年都能卖出去.试问:当取何值时,新产品年利润的期望取得最大值?并判断这一年利润能否达到预期目标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,,分别是棱,的中点,点在对角线上运动.当的面积取得最小值时,点的位置是( )
A.线段的三等分点,且靠近点B.线段的中点
C.线段的三等分点,且靠近点D.线段的四等分点,且靠近点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com