精英家教网 > 高中数学 > 题目详情

【题目】如图所示,圆O的两弦AB和CD交于点E,作EF∥CB,并且交AD的延长线于点F,FG切圆O于点G.

(1)求证:△DEF∽△EFA;
(2)如果FG=1,求EF的长.

【答案】
(1)证明:因为EF∥CB,所以∠BCE=∠FED,又∠BAD=∠BCD,所以∠BAD=∠FED,

又∠EFD=∠EFD,所以△DEF∽△EFA.


(2)解:由(1)得 ,EF2=FAFD.

因为FG是切线,所以FG2=FDFA,所以EF=FG=1.


【解析】(1)由同位角相等得出∠BCE=∠FED,由圆中同弧所对圆周角相等得出∠BAD=∠BCD,结合公共角∠EFD=∠EFD,证出△DEF∽△EFA(2)由(1)得EF2=FAFD,再由圆的切线长定理FG2=FDFA,所以EF=FG=1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】的展开式的各项系数之和为M,二项式系数之和为N,M-N=992.

(1)判断该展开式中有无x2项?若有,求出它的系数;若没有,说明理由;

(2)求此展开式中有理项的项数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的通项an=n2(cos2 ﹣sin2 ),其前n项和为Sn , 则S30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点P(3,0)在圆C:(x﹣m)2+(y﹣2)2=40内,动直线AB过点P且交圆C于A、B两点,若△ABC的面积的最大值为20,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,A,B分别是椭圆C:=1(a>b>0)的左右顶点,F为其右焦点,2|AF||FB|的等差中项,|AF||FB|的等比中项.P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.

(1)求椭圆C的方程;

(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|﹣2|x+1|的最大值为m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,使 成立,则称为函数的一个“生成点”,则函数的“生成点”共有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数是奇函数,求实数的值;

(2)在在(1)的条件下,判断函数与函数的图像公共点个数,并说明理由;

(3)当时,函数的图象始终在函数的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.

查看答案和解析>>

同步练习册答案