精英家教网 > 高中数学 > 题目详情

已知A={x|-2<x<4,x∈Z},则Z+∩A的真子集的个数是 ________个.

7
分析:先根据集合A中的范围及x属于整数,得到集合A中的元素,然后确定出Z+∩A中的元素,求出Z+∩A的真子集的个数即可.
解答:由集合A={x|-2<x<4,x∈Z},得到集合A={-1,0,1,2,3},
所以Z+∩A={1,2,3},
则Z+∩A的真子集为:{1},{2},{3},{1,2},{1,3},{2,3},∅共7个.
故答案为:7
点评:此题考查了交集的求法,会根据集合中元素的个数求出集合的真子集,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={x|-2<x<3},B={x|0<x<5},则A∪B=
{x|-2<x<5}
{x|-2<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|-2<x≤3}、B={x|y=
x-1
}
,则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},B⊆A,则m的取值范围为(  )
A、(-∞,3]
B、[1,3]
C、[2,3]
D、[
3
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|2≤x≤3},B={x|m+1≤x≤2m+5},A⊆B,则m的取值范围为
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|-2≤x≤5},B={x|x<1或x>7},求A∩B,?R(A∪B),A∩(?RB).

查看答案和解析>>

同步练习册答案