精英家教网 > 高中数学 > 题目详情

【题目】闽越水镇是闽侯县打造闽都水乡文化特色小镇核心区,该小镇有一块1800平方米的矩形地块,开发商准备在中间挖出三个矩形池塘养闽侯特色金鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植柳树,形成柳中观鱼特色景观.假设池塘周围的基围宽均为2米,如图,设池塘所占的总面积为平方米.

(1)试用表示a及

(2)当取何值时,才能使得最大?并求出的最大值.

【答案】(1);(2)x为45米时,S最大,且S最大值为1 352平方米

【解析】

(1)由题意结合边长关系确定a,S关于x的函数关系即可,注意实际问题中函数的定义域;

(2)由题意结合均值不等式的结论确定S取得最大值时x的值和S的最大值即可.

(1)由题图形知,3a+6=x

.

则总面积S·a+2a

a

=1 832-

(2)S=1 832-

S≤1 832-2

=1 832-2×240=1 352(平方米).

当且仅当,此时,x=45.

即当x45米时,S最大,且S最大值为1 352平方米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若ln(x+1)﹣1≤ax+b对任意x>﹣1的恒成立,则 的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-x+c定义在区间[0,1]上,x1,x2

[0,1],且x1≠x2,求证:

(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<|x1-x2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)经过点(2 ,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等边三角形.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P(x,y)是椭圆E上的动点,M(2,0)为一定点,求|PM|的最小值及取得最小值时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆内接四边形ABCD中,AB=3,AD=2,∠BCD=1200

(1)求线段BD的长与圆的面积

(2)求四边形ABCD的周长的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线f(x)= ax3﹣blnx在x=1处的切线方程为y=﹣2x+
(Ⅰ)求f(x)的极值;
(Ⅱ)证明:x>0时, (e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+ )(ω>0)的图象与x轴的交点横坐标构成一个公差为 的等差数列,要得到g(x)=cos(ωx+ )的图象,可将f(x)的图象(
A.向右平移 个单位
B.向左平移 个单位
C.向左平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由直线x+2y7=0上一点P引圆x2+y22x+4y+2=0的一条切线,切点为A,则|PA|的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容 异”.“势’’即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为l的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图l和图2所截得的两线段长始终相等,则图l的面积为

查看答案和解析>>

同步练习册答案