精英家教网 > 高中数学 > 题目详情
12.双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{2}$x

分析 渐近线方程是$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=0,整理后就得到双曲线的渐近线方程.

解答 解:∵双曲线标准方程为$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1,
其渐近线方程是$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=0,
整理得y=±$\frac{\sqrt{2}}{2}$x.
故选:C.

点评 本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若集合A={x|-1≤2x+1≤3},B=$\{x|\frac{x-2}{x}≤0\}$,则A∪B={x|-1≤x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点P(2,5)到直线y=-3x的距离d等于(  )
A.0B.$\frac{11}{10}\sqrt{10}$C.$\sqrt{3}$+52D.$\sqrt{3}$-52

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.四棱柱ABCD-A1B1C1D1的所有面均是边长为1的菱形,∠DAB=∠A1AB=∠A1AD=60°,则对角线AC1的长为(  )
A.2B.4C.$\sqrt{6}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2x+sinxcosx.
(1)求函数f(x)的最大值;
(2)求函数f(x)的单调增区间;
(3)在△ABC中,AB=3,bcosC=ccosB,且角A满足f($\frac{A}{2}$+$\frac{π}{8}$)=$\frac{3\sqrt{2}+5}{10}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若圆C1:(x-a)2+y2=4(a>0)与圆C2:x2+(y-$\sqrt{5}$)2=9相外切,则实数a的值为$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1,F1,F2分别是椭圆C的左、右焦点.
(Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1
(Ⅱ)已知P是椭圆上一点,且PF1⊥PF2,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{5}}{3}$,左顶点、上顶点分别为A,B,△OAB的面积为3(点O为坐标原点).
(1)求椭圆C的方程;
(2)若P、Q分别是AB、椭圆C上的动点,且$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$(λ<0),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的定义域为D,若对于?a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的边长,则称f(x)为“三角形函数”.给出下列四个函数:
①f(x)=lnx(e2≤x≤e3);②f(x)=4-cosx;③$f(x)={x^{\frac{1}{2}}}(1<x<4)$;④$f(x)=\frac{e^x}{{{e^x}+1}}$.
其中为“三角形函数”的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案