精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数f(x),当x∈[0,2]时,f(x)=4(1﹣|x﹣1|),且对于任意实数x∈[2n﹣2,2n+1﹣2](n∈N* , n≥2),都有f(x)= f( ﹣1).若g(x)=f(x)﹣logax有且只有三个零点,则a的取值范围是(
A.[2,10]
B.[ ]
C.(2,10)
D.[2,10)

【答案】C
【解析】解:当x∈[0,2]时,f(x)=4(1﹣|x﹣1|), 当n=2时,x∈[2,6],此时 ﹣1∈[0,2],则f(x)= f( ﹣1)= ×4(1﹣| ﹣1﹣1|)=2(1﹣| ﹣2|),
当n=3时,x∈[6,14],此时 ﹣1∈[2,6],则f(x)= f( ﹣1)= ×2(1﹣| |)=1﹣| |,
由g(x)=f(x)﹣logax=0,得f(x)=logax,分别作出函数f(x)和y=logax的图象,

若0<a<1,则此时两个函数图象只有1个交点,不满足条件.
若a>1,当对数函数图象经过A时,两个图象只有2个交点,当图象经过点B时,两个函数有4个交点,
则要使两个函数有3个交点,则对数函数图象必须在A点以下,B点以上,
∵f(4)=2,f(10)=1,∴A(4,2),B(10,1),
即满足
,解得
即2<a<10,
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mln(x+1)﹣nx在点(1,f(1))处的切线与y轴垂直,且 ,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的单调区间;
(Ⅱ)设g(x)=﹣x2+2x,确定非负实数a的取值范围,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 设函数g(n)= ,若bn=g(2n+4),n∈N* , 则数列{bn}的前n(n≥2)项和Sn等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的最小值为m.
(1)求m的值;
(2)若a,b,c是正实数,且a+b+c=m,求证:2(a3+b3+c3)≥ab+bc+ca﹣3abc.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.
(1)求抛物线的标准方程;
(2)设直线m在y轴上的截距为6,且与抛物线交于P,Q两点,连结QF并延长交抛物线的准线于点R,当直线PR恰与抛物线相切时,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三角形ABC的三个顶点都在球心为O、半径为3的球面上,且三棱锥O﹣ABC的高为2,点D是线段BC的中点,过点D作球O的截面,则截面积的最小值为(
A.
B.4π
C.
D.3π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+2|﹣|x﹣2|+m(m∈R).
(Ⅰ)若m=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三个实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

同步练习册答案