精英家教网 > 高中数学 > 题目详情

命题“?x∈R,x2+x+1>0”的否定是________.

?x∈R,x2+x+1≤0
分析:欲写出命题的否定,必须同时改变两个地方:①:“?”;②:“>”即可,据此分析选项可得答案.
解答:命题“?x∈R,x2+x+1>0“的否定是:
?x∈R,x2+x+1≤0.
故答案为:?x∈R,x2+x+1≤0.
点评:这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2+x>0”的否定是“
?x∈R,x2+x≤0
?x∈R,x2+x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:其中真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)给定下列四个命题:
①“x=
π
6
”是“sinx=
1
2
”的充分不必要条件;    
②若“p∨q”为真,则“p∧q”为真;
③命题“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
④线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强;
其中为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2+ax-4a<0”的否定是
 

查看答案和解析>>

同步练习册答案