精英家教网 > 高中数学 > 题目详情
13.若实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$,则z=x-2y的最小值是(  )
A.0B.$\frac{3}{2}$C.-2D.$-\frac{3}{2}$

分析 根据已知的约束条件 画出满足约束条件的可行域,再用角点法,求出目标函数的最小值.

解答 解:约束条件对应的平面区域如下图示:
由$\left\{\begin{array}{l}{x-y+1=0}\\{x=0}\end{array}\right.$ 得:A(0,1);
故当直线z=x-2y过A(0,1)时,Z取得最小值,
故z=0-2=-2,
故选:C

点评 本题考查的知识点是线性规划,处理的思路为:然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某班共有50名学生,通过调查发现有30人同时在张老师和王老师的朋友圈,只有1人不在任何一个老师的朋友圈,且张老师的朋友圈比王老师的朋友圈多7人,则张老师的朋友圈有43人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知椭圆C的左右焦点坐标分别是(-2,0),(2,0),离心率为$\frac{\sqrt{2}}{2}$,若P为椭圆C上的任意一点,过点P垂直于y轴的直线交y轴于点Q,M为线段QP的中点,则点M的轨迹方程为$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线l:(a2-1)x-y-2a+1=0不过第二象限,则a的取值范围为(  )
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinα-sinβ=1-$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,则cos(α-β)=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为(  )
A.内切B.外切C.相交D.外离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z=$\frac{2i}{1-i}$,其中i 为虚数单位,则z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆M的圆心在直线y=-x上,且经过点A(-3,0),B(1,2).
(1)求圆M的方程;
(2)直线l与圆M相切,且l在y轴上的截距是在x轴上截距的两倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知z=$\frac{4-3i}{3+4i}$+2(i为虚数单位),则z在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案