精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是_________(请把你认为正确说法的序号都填上).

1)函数的最小正周期为

2)若命题,使得,则,均有

3中,的充要条件;

4)已知点N所在平面内,且,则点N的重心;

【答案】(1) (2) (3) (4)

【解析】

根据降幂公式和辅助角公式,化简即可判断(1);根据特称命题的否定即可判断(2);根据三角形中的边角关系可判断(3);根据三角形中重心的向量表示可判断(4).

对于(1),由降幂公式及辅助角公式,化简可得

所以最小正周期为,(1)正确;

对于(2), 根据特称命题的否定可知:命题: “,使得

:“,均有”,所以(2)正确;

对于(3), 中由正弦定理可知,,根据三角形中大边对大角可知;,,由正弦定理可知.所以的充要条件,故(3)正确;

对于(4),N所在平面内,且

中点为,由向量的线性运算可得

N的重心,所以(4)正确.

综上可知, 正确的是(1) (2) (3) (4)

故答案为: (1) (2) (3) (4)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】纹样是中国艺术宝库的瑰宝,火纹是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷2000个点,己知恰有800个点落在阴影部分,据此可估计阴影部分的面积是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】业界称中国芯迎来发展和投资元年,某芯片企业准备研发一款产品,研发启动时投入资金为AA为常数)元,之后每年会投入一笔研发资金,n年后总投入资金记为,经计算发现当时,近似地满足,其中为常数,.已知3年后总投入资金为研发启动是投入资金的3倍,问:

1)研发启动多少年后,总投入资金是研发启动时投入资金的8倍;

2)研发启动后第几年投入的资金最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P到圆(x+22+y2=1的切线长与到y轴的距离之比为tt0t≠1);

1)求动点P的轨迹C的方程;

2)当时,将轨迹C的图形沿着x轴向左移动1个单位,得到曲线G,过曲线G上一点Q作两条渐近线的垂线,垂足分别是P1P2,求的值;

3)设曲线C的两焦点为F1F2,求t的取值范围,使得曲线C上不存在点Q,使∠F1QF2=θ0θπ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1,求函数的极值;

2 时,判断函数在区间上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在试验地随机抽选各株,对每株进行综合评分(评分的高低反映花苗品质的高低),将每株所得的综合评分制成如图所示的频率分布直方图:

1)求图中的值,并求综合评分的中位数;

2)记综合评分为及以上的花苗为优质花苗.填写下面的列联表,并判断是否有的把握认为优质花苗与培育方法有关.

优质花苗

非优质花苗

合计

甲培育法

乙培育法

合计

附:下面的临界值表仅供参考.

(参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系上,有一点列,设点的坐标),其中 ,且满足).

1)已知点,点满足,求的坐标;

2)已知点),且)是递增数列,点在直线上,求

3)若点的坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)证明:,都有

2)若函数有且只有一个零点,求的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线为焦点,且过点

1)求双曲线与其渐近线的方程

2)若斜率为1的直线与双曲线相交于两点,且为坐标原点),求直线的方程

查看答案和解析>>

同步练习册答案