精英家教网 > 高中数学 > 题目详情
13.若函数f(x)=$\sqrt{3}$sinωx-cosωx(ω>0)在区间(-π,π)与至少存在两个极大值点,则ω的取值范围是($\frac{4}{3}$,+∞).

分析 求出f(x)的极大值点,令绝对值最小的两个极大值点在区间(-π,π)上,列不等式解出.

解答 解:f(x)=2sin(ωx-$\frac{π}{6}$),令f(x)=2得sin(ωx-$\frac{π}{6}$)=1,∴ωx-$\frac{π}{6}$=$\frac{π}{2}$+2kπ.
解得x=$\frac{2π}{3ω}$+$\frac{2kπ}{ω}$.当k=0时,x=$\frac{2π}{3ω}$,当k=1时,x=$\frac{8π}{3ω}$,当k=-1时,x=-$\frac{4π}{3ω}$,
∵f(x)在区间(-π,π)与至少存在两个极大值点,
∴$\left\{\begin{array}{l}{-π<\frac{2π}{3ω}<π}\\{-π<-\frac{4π}{3ω}<π}\end{array}\right.$,解得ω>$\frac{4}{3}$.
故答案为($\frac{4}{3}$,+∞).

点评 本题考查了三角函数的恒等变换,求出极大值点是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=x2-px+q,且不等式|f(x)|≤2当1≤x≤5时恒成立,则f(3)的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知cos2α=$\frac{1}{3}$,则sin2(α+$\frac{π}{2}$)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,
(1)若直线x+y+1=0与椭圆相交于P、Q两点,且OP⊥OQ,求此椭圆方程.
(2)若另一直线与椭圆C相交于A、B两点,且线段AB恰好为圆(x-2)2+(y-1)2=$\frac{20}{3}$的直径,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2$\sqrt{2}$x+tanα只有一个零点.
(1)求tanα的值;
(2)化简求值:$\frac{sin(\frac{π}{2}-α)-2sin(π+α)}{cos(-α)+sin(6π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知m,n,p表示不重合的三条直线,α,β,γ表示不重合的三个平面.下列说法正确的是①③.(写出所有正确命题的序号).
①若m⊥p,m∥n,则n⊥p;
②若m∥β,n∥β,m?α,n?α,则α∥β;
③若α⊥γ,β⊥γ,α∩β=m,则m⊥γ;
④若α∥β,m?α,n?β,则m∥n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知tan(π-θ)=log2$\frac{1}{4}$.
(I)求tan(θ+$\frac{π}{4}$)的值;
(Ⅱ)求$\frac{sin2θ}{si{n}^{2}θ+sinθcosθ+cos2θ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设n∈N*,且sinα+cosα=-1.,求证:sinnα+cosnα=(-1)n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,过右焦点F且斜率为k(k>0)的直线与椭圆C相交于A,B两点.若$\overrightarrow{AF}=2\overrightarrow{FB}$,则k=$\frac{\sqrt{23}}{2}$.

查看答案和解析>>

同步练习册答案