精英家教网 > 高中数学 > 题目详情

已知定义域为R的函数数学公式是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性并加以证明;
(仅理科做) (3)当t∈[-1,2]时,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

解:(1)因为f(x)是奇函数,函数的定义域为R,所以f(0)==0,可得b=1,
,取f(-1)=-f(1)得=,解之得a=2
因此,,满足=-=-f(x),符合题意
所以a=2,b=1
(2)由(1)得,=,设x1<x2,则
f(x1)-f(x2)=-()=
∵y=2x在实数集上是增函数且函数值恒大于0,
->0,+1>0且+1>0,可得f(x1)-f(x2)>0,即f(x1)>f(x2
∴f(x)在(-∞,+∞)上是单调减函数
(3)∵f(x)是奇函数,
∴f(t2-2t)+f(2t2-k)<0,等价于f(t2-2t)<-f(2t2-k)=f(k-2t2),
∵f(x)在(-∞,+∞)上为减函数,
∴由上式可得:t2-2t>k-2t2
即对任意t∈R有:3t2-2t-k>0,
∴△=4+12k<0?k<-,即实数k的取值范围是(-∞,-).
分析:(1)利用特殊值:f(0)=0且f(-1)=-f(1),建立关于a、b的等式并解得a=2,b=1,再将其代入函数表达式加以检验即可;
(2)根据单调性的定义,设x1<x2,将f(x1)与f(x2)作差,再通分整理,可得这个差是一个正数,从而得到f(x1)>f(x2),所以f(x)在(-∞,+∞)上是单调减函数;
(3)根据函数的单调性和奇偶性,将原不等式恒成立转化为关于t的一元二次不等式3t2-2t-k>0恒成立,再利用一元二次不等式解法结合根的判别式,可求出k的取值范围.
点评:本题给出一个含有指数式的分式形式的函数,叫我们讨论它的单调性与奇偶性,着重考查了函数奇偶性与单调性的综合应用,考查了一元二次不等式恒成立问题等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案