精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的不等式组

(1) 若k=1,求不等式组的解集;

(2) 若不等式组的整数解的集合为{-2},求实数k的取值范围.

【答案】(1){x|x<-1};(2)3k<2.

【解析】试题分析:(1)将k=1代入求解两个方程求交集即可.

(2)根据-2是方程的根,代入求得k的范围,再求出另一根,根据范围求解即可.

试题解析:

(1) k12x27x5<0得-x<-1

x2x2>0解得x<1x>2.

k1不等式组的解集是{x|x<-1}

(2) 不等式组的整数解的集合为{2}

22x2(2k5)x5k<0的解

k2,-k>-.

又方程2x2(2k5)x5k0的两根为k与-

2x2(2k5)x5k<0的解是-<x<k.

由于不等式组的整数解的集合为{2}

2<k3解得-3k<2k的取值范围是-3k<2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于x的二次函数f(x)=x2+(2t-1)x+1-2t.

(1)求证:对于任意t∈R,方程f(x)=1必有实数根;

(2)若<t<,求证:方程f(x)=0在区间(-1,0)及内各有一个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},:(1)AB;(2)AB;(3)A∪(UB);(4)B∩(UA);(5)(UA)∩(UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为元,当用水超过5吨时,超过部分每吨4元。某月甲、乙两户共交水费元,已知甲、乙两户该月用水量分别为吨。

(1)关于的函数。

(2)若甲、乙两户该月共交水费元,分别求甲、乙两户该月的用水量和水费。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数,

(1)若函数为奇函数,求的值;

(2)若函数上有意义,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数是奇函数,函数的定义域为.

1)求的值;

2)若上单调递减,根据单调性的定义求实数的取值范围;

3)在(2)的条件下,若函数在区间上有且仅有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣(a∈R)

(Ⅰ)判断函数f(x)在R上的单调性,并用单调函数的定义证明;

(Ⅱ)是否存在实数a使函数f(x)为奇函数?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:R(x)其中x是仪器的月产量.当月产量为何值时,公司所获得利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)如果函数的单调递减区间为求函数的解析式

(2)在(1)的条件下,求函数的图象在点处的切线方程

(3)已知不等式恒成立若方程恰有两个不等实根,求的取值范围

查看答案和解析>>

同步练习册答案