精英家教网 > 高中数学 > 题目详情

【题目】为了解某校高三学生的视力情况,随机地抽查了该校1000名高三学生的视力情况,得到频率分布直方图,如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为,视力在4.6到5.0之间的学生数 的值分别为( )

A. B. C. D.

【答案】C

【解析】由频率分布直方图知组距为0.1,4.34.4间的频数为10000.10.1=10, 4.44.5间的频数为10000.10.3=30,又前4组的频数成等比数列,所以公比为3,6组频数成等差数列,且共有1000-130=870,从而4.64.7间的频数最大,,所以a=0.27,设公差为d, ,解得d=-5, ,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市将建一个制药厂,但该厂投产后预计每天要排放大约80吨工业废气,这将造成极大的环境污染.为了保护环境,市政府决定支持该厂贷款引进废气处理设备来减少废气的排放,该设备可以将废气转化为某种化工产品和符合排放要求的气体,经测算,制药厂每天利用设备处理废气的综合成本(元)与废气处理量(吨)之间的函数关系可近似地表示为,且每处理吨工业废气可得价值为元的某种化工产品并将之利润全部用来补贴废气处理.

(1)若该制药厂每天废气处理量计划定位20吨时,那么工厂需要每天投入的废气处理资金为多少元?

(2)若该制药厂每天废气处理量计划定为吨,且工厂不用投入废气处理资金就能完成计划的处理量,求的取值范围;

(3)若该制药厂每天废气处理量计划定为)吨,且市政府决定为处理每吨废气至少补贴制药厂元以确保该厂完成计划的处理量总是不用投入废气处理资金,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)讨论的单调性;

(Ⅱ)若函数存在极值,对于任意的,存在正实数,使得,试判断的大小关系并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一份测试题包括6道选择题,每题只有一个选项是正确的.如果一个学生对每一道题都随机猜一个答案,用随机模拟方法估计该学生至少答对3道题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:不等式选讲

已知函数f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届广西陆川县中学高三文上学期二模】已知函数.

I)求函数的单调区间;

II)若上恒成立,求实数的取值范围;

III)在(II)的条件下,对任意的,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,().

(1)若函数的图象在上有两个不同的交点,求实数的取值范围;

(2)若在上不等式恒成立,求实数的取值范围;

(3)证明:对于时,任意,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分,第(1)问 6 分,第(2)问 6 分)

某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:

连锁店

A店

B店

C店

售价(元)

80

86

82

88

84

90

销售量(件)

88

78

85

75

82

66

(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程

(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)若恒成立,求的取值范围;

)设,(为自然对数的底数).是否存在常数,使恒成立,若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案