精英家教网 > 高中数学 > 题目详情
已知对任意的平面向量,把绕其起点沿逆时针方向旋转θ角,得到向量,叫做把点B绕点A逆时针方向旋转θ角得到点P
①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标
②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线x2-y2=1,求原来曲线C的方程.
【答案】分析:①设P(x,y),则,根据把点B绕点A沿逆时针方向旋转后得到点P,
可得将绕点A沿逆时针方向旋转后得到,由此可得的坐标,从而可求点P的坐标
②利用旋转变换确定旋转前后,坐标之间的关系,利用已知曲线的方程,我们可以求出原来曲线C的方程.
解答:解:①设P(x,y),则…(2分)
绕点A沿逆时针方向旋转后得到
所以==(-1,-3)…(6分)
,解得x=0,y=-1 …(7分)
∴点P的坐标为(0,-1)
②设平面内曲线C上的任一点Q(x,y),绕O逆时针方向旋转后得到的点Q′(x′,y′),则
…(10分)
…(11分)
又x′2-y′2=1 …(12分)
…(13分)
化简得:…(14分)
点评:本题考查新定义,考查旋转变换,利用旋转变换公式是我们解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知对任意的平面向量,把
AB
绕其起点沿逆时针方向旋转θ角,得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ)
,叫做把点B绕点A逆时针方向旋转θ角得到点P
①已知平面内的点A(1,2),B(1+
2
,2-2
2
)
,把点B绕点A沿逆时针方向旋转
4
后得到点P,求点P的坐标
②设平面内曲线C上的每一点绕逆时针方向旋转
π
4
后得到的点的轨迹是曲线x2-y2=1,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源:广东省普宁二中2011-2012学年高二11月月考数学理科试题 题型:044

已知对任意的平面向量,把绕其起点沿逆时针方向旋转角,得到向量=(xcos-ysin,xsin+ycos),叫做把点B绕点A逆时针方向旋转角得到点P

①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标

②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线x2-y2=1,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年度广东省普宁第二中学高二上学期11月月考理科数学试卷 题型:解答题

(本题满分12分)已知对任意的平面向量,把绕其起点沿逆时针方向旋转角,得到向量,叫做把点B绕点A逆时针方向旋转角得到点P
①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标
②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题

(本题满分12分)已知对任意的平面向量,把绕其起点沿逆时针方向旋转角,得到向量,叫做把点B绕点A逆时针方向旋转角得到点P

①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标

②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线,求原来曲线C的方程.

 

查看答案和解析>>

同步练习册答案