精英家教网 > 高中数学 > 题目详情
(2012•徐汇区一模)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D,E分别是BC,AP的中点.
(1)求异面直线AC与ED所成的角的大小;
(2)求△PDE绕直线PA旋转一周所构成的旋转体的体积.
分析:(1)解法一:欲求异面直线所成角,只需平移异面直线中的一条,是它们成为相交直线,则相交直线所成角就是异面直线所成角,再放入三角形中,通过解三角形求出该角.本题中取AB中点F,连接DF,EF,则AC∥DF,∠EDF就是异面直线AC与PB所成的角.再放入Rt△EFD中来求.
解法二:利用空间向量来解,先建立空间直角坐标系,把异面直线AC与ED所成的角转化为向量
AC
ED
的夹角,再利用向量的夹角公式计算即可.
(2)△PDE绕直线PA旋转一周所构成的旋转体,是以AD为底面半径、AP为高的圆锥中挖去一个以AD为底面半径、AE为高的小圆锥,所以只需求出两个圆锥的体积,再相减即可.
解答:解(1)解法一:取AB中点F,连接DF,EF,则AC∥DF,
所以∠EDF就是异面直线AC与PB所成的角.
由已知,AC=EA=AD=1 , AB=
3
 , PB=
7
,∵AC⊥EF,∴DF⊥EF.
在Rt△EFD中,DF=
1
2
 , ED=
2
cos∠EDF=
2
4

所以异面直线AC与ED所成的角为arccos
2
4
arctan
7
)

解法二:建立空间直角坐标系,C(1 , 0 , 0) , D (
1
2
 , 
3
2
 , 0)
,E(0,0,1),
AC
=(1 , 0 , 0 ) , 
ED
=(
1
2
 , 
3
2
 , -1)

PCDEcosθ=
1
2
2
=
2
4

所以异面直线AC与ED所成的角为arccos
2
4

(2)△PDE绕直线PA旋转一周所构成的旋转体,是以AD
为底面半径、AP为高的圆锥中挖去一个以AD为底面
半径、AE为高的小圆锥,体积V=
1
3
π•1•2-
1
3
π•1•1=
1
3
π
点评:本题主要考查了异面直线所成角的求法,以及组合体体积的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•徐汇区一模)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是
1
5
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)已知cos(π+θ)=
4
5
,则cos2θ=
7
25
7
25

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)已知各项为正数的等比数列{an}满足:a7=a6+2a5,若存在两项am、an使得
aman
=2
2
a1
,则
1
m
+
4
n
的最小值为
11
6
11
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)由9个正数组成的矩阵
a11a12a13
a21a22a23
a31a32a33
中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)若(x+
12x
)
n
的展开式中前三项的系数依次成等差数列,则展开式中x4项的系数为
7
7

查看答案和解析>>

同步练习册答案