【题目】已知函数,,.
(1)求函数的极值;
(2)若函数有两个零点,求实数取值范围;
(3)若当时,恒成立,求实数的最大值.
【答案】(1)极小值,没有极大值; (2); (3)2 .
【解析】
(1)直接进行求导,根据导数与原函数的关系进行极值求解
(2)由于参数的存在,故需对进行分类讨论,时与题意不符,舍去,对进行导数求解,通过增减性进行辨析,当时取到极大值,此时需要判断函数在的左右两侧存在函数值小于零的点,进而得证
(3)令,先求导,再根据恒成立问题求解参数
(1),令,得,
极小值 |
所以有极小值,没有极大值;
(2),
①时,,在单调递增,此时至多有一个零点,这与题意不符;
②,令,得,
极大值 |
因为函数有两个零点,所以,得,
,,又在上单调,且图象连续不间断,所以在上有一个零点;
,
,所以在单调减,所以,
所以,,,又在上单调,且图象连续不间断,所以在上有一个零点;
综上,实数取值范围为;
(3)记
,令,
所以, ,
①时,,在上单调增,所以,符合题意;
②时,,,又在上单调增,
所以,,使得
极小值 |
则当时,,这与恒成立不符,
综上,实数的最大值为2.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,圆.以极点为原点,极轴为轴正半轴建立直角坐标系,直线经过点且倾斜角为.
求圆的直角坐标方程和直线的参数方程;
已知直线与圆交与,,满足为的中点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程及直线的直角坐标方程;
(2)已知点为曲线上的动点,当点到直线的距离最大时,求点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形纸片中,,,在线段上取一点,沿着过点的直线将矩形右下角折起,使得右下角顶点恰好落在矩形的左边边上.设折痕所在直线与交于点,记折痕的长度为,翻折角为.
(1)探求与的函数关系,推导出用表示的函数表达式;
(2)设的长为,求的取值范围;
(3)确定点在何处时,翻折后重叠部分的图形面积最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已如椭圆C:的两个焦点与其中一个顶点构成一个斜边长为4的等腰直角三角形.
(1)求椭圆C的标准方程;
(2)设动直线l交椭圆C于P,Q两点,直线OP,OQ的斜率分别为k,k'.若,求证△OPQ的面积为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.
(1)求椭圆的方程;
(2)过椭圆的右焦点作直线交椭圆于、两点,交轴于点,若,,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为
A. 254B. 381C. 510D. 765
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程与直线的极坐标方程;
(2)若射线与曲线交于点(不同于原点),与直线交于点,直线与极轴所在直线交于点.求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com