精英家教网 > 高中数学 > 题目详情
如图,A(-1,0),B(1,0),过曲线C1:y=x2-1(|x|≥1)上一点M的切线l,与曲线C2:y=-
m(1-x2)
(|x|<1)
也相切于点N,记点M的横坐标为t(t>1).
(1)用t表示m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求此时MN所在直线的方程.
(1)切线l:y-(t2-1)=2t(x-t),即y=2tx-t2-1,
代入y=-
m(1-x2)

化简并整理得(m+4t2)x2-4t(t2+1)x+(t2+1)2-m=0,(*)
由△=16t2(t2+1)2+4(m+4t2)[m-(t2+1)2]=4m[m-(t2-1)2]=0
得m=0或m=(t2-1)2
若m=0,代入(*)式得xN=
t2+1
2t
>1
,与已知|xN|<1矛盾;
若m=(t2-1)2,代入(*)式得xN=
2t
t2+1
∈(0,1)
满足条件,
yN=2txN-t2-1=-
(t2-1)2
t2+1

综上,m=(t2-1)2,点N的坐标为(
2t
t2+1
,-
(t2-1)2
t2+1
)

(2)因为kAM=
t2-1
t+1
=t-1
kAN=
-
(t2-1)2
t2+1
2t
t2+1
+1
=-(t-1)2

若∠MAB=∠NAB,则kAM=-kAN,即t=2,此时m=9,
故当实数m=9时,∠MAB=∠NAB.
此时kAM=1,kAN=-1,∠MAB=∠NAB=45°,
易得M(2,3),N(
4
5
,-
9
5
)

此时MN所在直线的方程为y=4x-5.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知直线l与椭圆(ab>0)相交于不同两点AB,,且,以M为焦点,以椭圆的右准线为相应准线的双曲线与直线l相交于N(4,1). (I)求椭圆的离心率; (II)设双曲线的离心率为,记,求的解析式,并求其定义域和值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=
1
2
的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆C:
x2
9
+
y2
4
=1
,斜率为k的直线l与椭圆相交于点M,N,点A是线段MN的中点,直线OA(O为坐标原点)的斜率是k′,那么kk′=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=4x,过点A(x0,0)(其中x0为常数,且x0>0)作直线l交抛物线于P,Q(点P在第一象限);
(1)设点Q关于x轴的对称点为D,直线DP交x轴于点B,求证:B为定点;
(2)若x0=1,M1,M2,M3为抛物线C上的三点,且△M1M2M3的重心为A,求线段M2M3所在直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
1
2
,一条准线方程为x=4.
(1)求椭圆E的标准方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为F(-
3
,0)
,右顶点为D(2,0),设点A(1,
1
2
).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;
(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动圆过定点A(-3,0)且和定圆(x-3)2+y2=4外切,则动圆圆心P的轨迹为(  )
A.双曲线B.椭圆C.抛物线D.双曲线一支

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=
1
2

(1)求椭圆E的方程;
(2)求∠F1AF2的平分线所在直线l的方程;
(3)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.

查看答案和解析>>

同步练习册答案