精英家教网 > 高中数学 > 题目详情
如图,已知圆A:(x+3)2+y2=100,圆A内一定点B(3,0),动圆P过B点且与圆A内切,求圆心P的轨迹方程.

解:设|PB|=r.

∵圆P与圆A内切,圆A的半径为10,

∴两圆的圆心距|PA|=10-r,

即|PA|+|PB|=10(大于|AB|).

∴点P的轨迹是以A、B两点为焦点的椭圆.

∴2a=10,2c=|AB|=6.

∴a=5,c=3.

∴b2=a2-c2=25-9=16,

即点P的轨迹方程为+=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知圆A过定点B(0,2),圆心A在抛物线C:x2=4y上运动,MN为圆A在x轴上所截得的弦.
(Ⅰ)证明:|MN|是定值;
(Ⅱ)讨论抛物线C的准线l与圆A的位置关系;
(Ⅲ)设D是抛物线C的准线l上任意一点,过D向抛物线作两条切线DS,DT(切点是S,T),判断直线ST是否过定点,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知定点A(1,0),定圆C:(x+1)2+y2=8,M为圆C上的一个动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,则点N的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆三模)如图,已知圆G:(x+
2
3
a)2+y2=4a2(a>0)
,定点T(
2
3
a,0)
,M为圆上一动点,P点在TM上,N点在GM上,且满足
TM
=2
TP
NP
TM
=0
,点N的轨迹为曲线E.
(Ⅰ)求曲线 E的方程;
(Ⅱ)设曲线E交直线l:y=k(x+1)于A、B两点,与x轴交于点C,若
AC
=2
CB
,若△ABO的面积是
3
2
,求a值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且|MN|=3椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且过点(
2
6
2
)

(I) 求圆C和椭圆D的方程;
(Ⅱ) 设椭圆D与x轴负半轴的交点为P,若过点M的动直线l与椭圆D交于A、B两点,∠ANM=∠BNP是否恒成立?给出你的判断并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年浙江省温州市六校高三联考数学试卷(理科)(解析版) 题型:解答题

如图,已知圆A过定点B(0,2),圆心A在抛物线C:x2=4y上运动,MN为圆A在x轴上所截得的弦.
(Ⅰ)证明:|MN|是定值;
(Ⅱ)讨论抛物线C的准线l与圆A的位置关系;
(Ⅲ)设D是抛物线C的准线l上任意一点,过D向抛物线作两条切线DS,DT(切点是S,T),判断直线ST是否过定点,并证明你的结论.

查看答案和解析>>

同步练习册答案