精英家教网 > 高中数学 > 题目详情
15.已知圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=$\frac{3π}{4}$时,求AB的长;
(2)当弦AB被点P0平分时,写出直线AB的方程.

分析 (1)当α=$\frac{3π}{4}$时,求出直线AB的方程,圆心到直线AB的距离,即可求AB的长;
(2)当弦AB被点P0平分时,OP0⊥AB,求出直线AB的斜率,即可写出直线AB的方程.

解答 解:(1)当$α=\frac{3}{4}π$时,直线AB的方程为:y-2=-(x+1)⇒x+y-1=0,
设圆心到直线AB的距离为d,则$d=\frac{{\sqrt{2}}}{2}$,
∴$|AB|=2\sqrt{{r^2}-{d^2}}=\sqrt{30}$…(5分),
(2)当弦AB被点P0平分时,OP0⊥AB,
∵${K_{O{P_0}}}=-2$,∴${K_{AB}}=\frac{1}{2}$,
故直线AB的方程为:$y-2=\frac{1}{2}(x+1)$即x-2y+5=0…(10分)

点评 本题考查直线方程,考查直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.命题:“?x∈R,sinx≤1”的否定是(  )
A.?x∈R,sinx>1B.?x∈R,sinx≤1C.?x∈R,sinx>1D.?x∈R,sinx≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在平面直角坐标系xOy中的双曲线C,它的中心在原点,焦点在x轴上,F1,F2分别为左、右焦点,F1(-5,0),离心率为5.
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)在双曲线右支上一点P满足|PF1|+|PF2|=14,试判定△PF1F2的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.以下命题中,正确命题的序号是②③.
①函数y=tanx在定义域内是增函数;
②函数y=2sin(2x+$\frac{π}{3}$)的图象关于x=$\frac{π}{12}$成轴对称;
③已知$\overrightarrow{b}$=(3,4),$\overrightarrow{a}$•$\overrightarrow{b}$=-2,则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$的方向上的投影是-$\frac{2}{5}$
④如果函数f(x)=ax2-2x-3在区间(-∞,4)上是单调递减的,则实数a的取值范围是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.利用秦九韶算法公式$\left\{\begin{array}{l}{{v}_{0}={a}_{n}}\\{{v}_{k}={v}_{k-1}x+{a}_{n-k}}\end{array}\right.$,(k=1,2,3,…,n).计算多项式f(x)=3x4-x2+2x+1,当x=2时的函数值;则v3=24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$=(2,-1,2),$\overrightarrow{b}$=(-1,3,-3),$\overrightarrow{c}$=(13,λ,3),若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,则λ的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a,b是非零实数,若a>b,则命题正确的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.a2>abC.$\frac{1}{{a{b^2}}}$>$\frac{1}{{{a^2}b}}$D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列点不是函数f(x)=tan(2x+$\frac{π}{3}$)的图象的一个对称中心的是(  )
A.(-$\frac{2π}{3}$,0)B.($\frac{2π}{3}$,0)C.($\frac{π}{12}$,0)D.(-$\frac{π}{6}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax+b(a>0,a≠1)的图象过点(0,-3),(2,0).
(1)求a与b的值;
(2)求x∈[-2,4]时,f(x)的最大值与最小值.

查看答案和解析>>

同步练习册答案