精英家教网 > 高中数学 > 题目详情

【题目】某乐园按时段收费,收费标准为:每玩一次不超过小时收费10元,超过小时的部分每小时收费元(不足小时的部分按小时计算).现有甲、乙二人参与但都不超过小时,甲、乙二人在每个时段离场是等可能的。为吸引顾客,每个顾客可以参加一次抽奖活动。

(1) 表示甲乙玩都不超过小时的付费情况,求甲、乙二人付费之和为44元的概率;

(2)抽奖活动的规则是:顾客通过操作按键使电脑自动产生两个[01]之间的均匀随机数,并按如右所示的程序框图执行.若电脑显示中奖,则该顾客中奖;若电脑显示谢谢,则不中奖,求顾客中奖的概率.

【答案】(1)(2)

【解析】

试题(1)设甲付费a元,乙付费b元,其中ab=10182634,由此利用列举法能求出甲、乙二人付费之和为44的概率;(2)由已知0≤x≤10≤y≤1点(xy)在正方形OABC内,作出条件的区域,由此能求出顾客中奖的概率

试题解析:(1)设甲付费元,乙付费元,其中

则甲、乙二人的费用构成的基本事件空间为:

16种情形.

其中,种情形符合题意.

甲、乙二人付费之和为的概率为

2)由已知如图的正方形内,

由条件

得到的区域为图中阴影部分

,令;令

由条件满足的区域面积

设顾客中奖的事件为,则顾客中奖的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若存在正实数xy使得x2+y2lny-lnx-axy=0aR)成立,则a的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于两点,设点,已知,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了16月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

日期

110

210

310

410

510

610

昼夜温差(℃)

10

11

13

12

8

6

就诊人数(个)

22

25

29

26

16

12

1)若选取的是1月与6月的两组数据,请根据25月份的数据,求出关于的线性回归方程

2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考数据

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)设,若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,,且.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数,按照以下的规律进行变换,如果是奇数,则下一步变成;如果是偶数,则下一步变成,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,下列程序框图就是根据这个游戏而设计的,如果输出的的值为6,则输入的值可以为( )

A. 5或16B. 16C. 5或32D. 4或5或32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高和体重数据如下表所示:

编号

1

2

3

4

5

6

7

8

身高

164

160

158

172

162

164

174

166

体重

60

46

43

48

48

50

61

52

该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.

1)调查员甲计算得出该组数据的线性回归方程为,请你据此预报一名身高为的女高中生的体重;

2)调查员乙仔细观察散点图发现,这8名同学中,编号为14的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为的女高中生的体重;

3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.

附:对于一组数据,其回归方程的斜率和截距的最小二乘法估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】条形图给出的是2017年全年及2018年全年全国居民人均可支配收入的平均数与中位数,饼图给出的是2018年全年全国居民人均消费及其构成,现有如下说法:

①2018年全年全国居民人均可支配收入的平均数的增长率低于2017年;

②2018年全年全国居民人均可支配收入的中位数约是平均数的

③2018年全年全国居民衣(衣着)食(食品烟酒)住(居住)行(交通通信)的支出超过人均消费的.

则上述说法中,正确的个数是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

同步练习册答案