精英家教网 > 高中数学 > 题目详情

【题目】曲线 的一条切线l与y=x,y轴三条直线围成三角形记为△OAB,则△OAB外接圆面积的最小值为(
A. ??
B. ??
C. ??
D.

【答案】C
【解析】解:设直线l与曲线的切点坐标为(x0 , y0), 函数 的导数为
则直线l方程为 ,即
可求直线l与y=x的交点为A(2x0 , 2x0),与y轴的交点为
在△OAB中,
当且仅当x02=2 时取等号.
由正弦定理可得△OAB得外接圆半径为
则△OAB外接圆面积
故选C.
直线l与曲线的切点坐标为(x0 , y0),求出函数的导数,可得切线的斜率和方程,联立直线y=x求得A的坐标,与y轴的交点B的坐标,运用两点距离公式和基本不等式可得AB的最小值,再由正弦定理可得外接圆的半径,进而得到所求面积的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,已知椭圆 的离心率为 ,C为椭圆上位于第一象限内的一点.

(1)若点 的坐标为 ,求a,b的值;
(2)设A为椭圆的左顶点,B为椭圆上一点,且 ,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) (Ⅰ)求角C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对x∈(﹣ )恒成立,则φ的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a∈R)
(1)讨论f(x)在(0,+∞)上的单调性;
(2)若对任意的正整数[﹣1,1)都有 成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+ax+b(a,b∈R)在x=ln2处的切线方程为y=x﹣2ln2. (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若k为差数,当x>0时,(k﹣x)f'(x)<x+1恒成立,求k的最大值(其中f'(x)为f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别是a,b,c,且 acosC=(2b﹣ c)cosA.
(1)求角A的大小;
(2)求cos( ﹣B)﹣2sin2 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sinxcosx﹣sin2(x﹣ ). (Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x﹣ )在[0, ]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且S6=5S2+18,a3n=3an , 数列{bn}满足b1b2…bn=4Sn . (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=log2bn , 且数列 的前n项和为Tn , 求T2016

查看答案和解析>>

同步练习册答案