精英家教网 > 高中数学 > 题目详情
10.三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,AA1=AB,M,N分别是A1B1,A1C1的中点,则BM与AN所成角的余弦值为(  )
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{7}{10}$D.$\frac{4}{5}$

分析 如图所示,取AC的中点D,A1C1的中点D1,建立空间直角坐标系.利用$cos<\overrightarrow{AM},\overrightarrow{BN}>$=$\frac{\overrightarrow{AM}•\overrightarrow{BN}}{|\overrightarrow{AM}||\overrightarrow{BN}|}$,即可得出.

解答 解:如图所示,取AC的中点D,A1C1的中点D1,建立空间直角坐标系.
不妨设AC=2.则A(0,-1,0),M(0,0,2),B(-$\sqrt{3}$,0,0),
N$(-\frac{\sqrt{3}}{2},-\frac{1}{2},2)$.
$\overrightarrow{AM}$=(0,1,2),$\overrightarrow{BN}$=$(\frac{\sqrt{3}}{2},-\frac{1}{2},2)$.
∴$cos<\overrightarrow{AM},\overrightarrow{BN}>$=$\frac{\overrightarrow{AM}•\overrightarrow{BN}}{|\overrightarrow{AM}||\overrightarrow{BN}|}$=$\frac{\frac{7}{2}}{\sqrt{5}×\sqrt{5}}$=$\frac{7}{10}$.
故选:C.

点评 本题考查了向量夹角公式、数量积运算性质、异面直线所成的角,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.过△ABC所在平面α外一点P,作PO⊥α,垂足为O,连接PA,PB,PC,若点O是△ABC的内心,则(  )
A.PA=PB=PCB.点P到AB,BC,AC的距离相等
C.PA⊥PB,PB⊥PC,PC⊥PAD.PA,PB,PC与平面α所成的角相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一束光线从A(1,0)点处射到y轴上一点B(0,2)后被y轴反射,则反射光线所在直线的方程是(  )
A.x+2y-2=0B.2x-y+2=0C.x-2y+2=0D.2x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知方程(m2-2m-3)x+(2m2+m-1)y+5-2m=0(m∈R).
(1)求方程表示一条直线的条件;
(2)当m为何值时,方程表示的直线与x轴垂直;
(3)若方程表示的直线在两坐标轴上的截距相等,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数z的共轭复数为$\overline{z}$,若z=1-i(i为虚数单位),则复数$\frac{\overline{z}}{z}$+z2+|z|在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设数列{an}是等比数列,公比q=2,Sn为{an}的前n项和,记Tn=$\frac{9{S}_{n}-{S}_{2n}}{{a}_{n+1}}$(n∈N*),则数列{Tn}最大项的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆锥的母线长为5cm,高为4cm,求这个圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3+ax2-4x+c,g(x)=lnx+(b-1)x+4,曲线y=f(x)在x=1处的切线方程为3x-y+1=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对?x1∈[-3,0],?x2∈[0,+∞)恒有f(x1)≥g(x2)成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,设$\frac{sinA}{sinC}+\frac{sinC}{sinA}=2,tanA+tanB=\sqrt{2}\frac{sinC}{cosA}$.
(Ⅰ)求B 的值
(Ⅱ)求$\frac{{b}^{2}}{ac}$的值.

查看答案和解析>>

同步练习册答案