【题目】已知点,求:
(1)过点与原点距离为2的直线的方程;
(2)过点与原点距离最大的直线的方程,最大距离是多少?
(3)是否存在过点与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.
【答案】(1)或;(2),最大距离为;(3)不存在,见解析
【解析】
(1)设直线,根据点到直线的距离公式可得参数的值,进而可得结果;
(2)过点与原点距离最大的直线是过点且与垂直的直线,求出斜率,利用点斜式可得直线方程,再利用点到直线的距离公式求出距离即可;
(3)只需比较“过点与原点距离最大的直线中最大距离”与6的大小,即可判断是否存在.
(1)设直线,则.化简,得或,故直线的方程为或
(2)过点与原点距离最大的直线是过点且与垂直的直线,
由,得,所以,
由直线方程的点斜式得,即,
即直线是过点与原点距离最大的直线,最大距离为.
(3)由(2)知,过点不存在到原点距离超过的直线,所以不存在过点且到原点距离为6的直线.
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的左、右焦点分别为,过点的直线交于,两点,的周长为, 的离心率
(Ⅰ)求的方程;
(Ⅱ)设点,,过点作轴的垂线,试判断直线与直线的交点是否恒在一条定直线上?若是,求该定直线的方程;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一枚棋子放在一个的棋盘上,记为从左、上数第行第列的小方格,求所有的四元数组,使得从出发,经过每个小方格恰一次到达(每步为将棋子从一个小方格移到与之有共同边的另一个小方格).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的实轴端点分别为,记双曲线的其中一个焦点为,一个虚轴端点为,若在线段上(不含端点)有且仅有两个不同的点,使得,则双曲线的离心率的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题方程表示双曲线;命题不等式的解集是. 为假, 为真,求的取值范围.
【答案】
【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.
试题解析:
真
,
真 或
∴
真假
假真
∴范围为
【题型】解答题
【结束】
18
【题目】如图,设是圆上的动点,点是在轴上的投影, 为上一点,且.
(1)当在圆上运动时,求点的轨迹的方程;
(2)求过点且斜率为的直线被所截线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,侧面ABE⊥底面BCDE,BC=2,CD=4。
(I)证明:AB⊥面BCDE;
(II)若AD=2,求二面角C-AD-E的正弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com