【题目】已知函数的极小值为.
(1)求实数k的值;
(2)令,当时,求证:.
【答案】(1);(2)证明见解析.
【解析】
(1)求出导数,研究函数的单调性,得极值,由极小值为求得值;
(2)由(1)得,令,同样由(1)可得的单调性(导数利用(1)中结论),这样得到关于u的不等式的解集应是单调递增区间的子集,而,从而,接着要证题中不等式,可先证,这又可设,,换元后同样由导数研究函数的单调性最值,证得不等式成立.
(1)显然,,由题意得:
令得:
若,则当时,;
当时,,此时为极小值点,合题意.
由得:.
若,显然不合题意.
所以.
(2)由题意得:,令
由(1)易知在单调递减,且;在单调递增
故关于u的不等式:的解集应是单调递增区间的子集
又,从而
令
.
令,则
所以
显然当时,;当时,
从而在单调递增,在单调递减
所以
又,所以,从而
于是,即
又
故.
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线: 与椭圆有且只有一个公共点.
(Ⅰ)求椭圆的方程及点的坐标;
(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点、,且与直线交于点,证明:存在常数,使得,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前项和为,等比数列的前项和为,且
(1)设,求数列的通项公式;
(2)在(1)的条件下,且,求满足的所有正整数;
(3)若存在正整数,且,试比较与的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,AC与BD交于点O,PO⊥平面ABCD,E为CD的中点连接AE交BD于G,点F在侧棱PD上,且DFPD.
(1)求证:PB∥平面AEF;
(2)若,求三棱锥E﹣PAD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:函数f(x)=2lnx﹣ax2+3x,其中a∈R.
(1)若f(1)=2,求函数f(x)的最大值;
(2)若a=﹣1,正实数x1,x2满足f(x1)+f(x2)=0,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为的菱形,, 平面,,,为的中点.
(1)求证:;
(2)求异面直线与所成角的余弦值;
(3)判断直线与平面的位置关系,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,其中a为常数,e是自然对数的底数,曲线在其与y轴的交点处的切线记作,曲线在其与x轴的交点处的切线记作,且.
(1)求之间的距离;
(2)若存在x使不等式成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线(),其准线方程,直线过点(),且与抛物线交于、两点,为坐标原点.
(1)求抛物线方程,并注明:的值与直线倾斜角的大小无关;
(2)若为抛物线上的动点,记的最小值为函数,求的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com