精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{π}{3}$,且$|{\overrightarrow b}$|=1,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{7}$,$|{\overrightarrow a}$|=3.

分析 利用向量的数量积化简求解即可.

解答 解:向量$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{π}{3}$,且$|{\overrightarrow b}$|=1,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{7}$,
可得:${\overrightarrow{a}}^{2}-4|\overrightarrow{a}||\overrightarrow{b}|cos<\overrightarrow{a},\overrightarrow{b}>+4{\overrightarrow{b}}^{2}$=7,
可得$|\overrightarrow{a}{|}^{2}-2|\overrightarrow{a}|-3=0$,
解得$|{\overrightarrow a}$|=3.
故答案为:3.

点评 本题考查向量的数量积的应用,向量的夹角的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.$\root{3}{2+\sqrt{3}}$•$\root{6}{7-4\sqrt{3}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.50B.50.5C.51.5D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若数列{an}满足:a1+2a2+22a3+…+2n-1an=$\frac{{{n^2}+1}}{3}(n∈{N^*})$,则an=$\left\{\begin{array}{l}\frac{2}{3},n=1\\ \frac{2n-1}{{3×{2^{n-1}}}},n≥2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知C1在直角坐标系下的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{5}}}{5}t\\ y=\frac{{2\sqrt{5}}}{5}t-1\end{array}\right.(t为参数)$,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ-4sinθ.
(Ⅰ)将C1的方程化为普通方程,并求出C2的直角坐标方程;
(Ⅱ)求曲线C1和C2两交点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n项和为Sn,已知${({a_7}-1)^3}+2016({a_7}-1)=-1$,${({a_{2010}}-1)^3}+2016({a_{2010}}-1)=1$,则下列结论正确的是(  )
A.S2016=2016,a2010<a7B.S2016=2016,a2010>a7
C.S2016=-2016,a2010<a7D.S2016=-2016,a2010>a7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|x2≤2},Z为整数集,则集合A∩Z中元素的个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设等差数列{an}的前n项和为Sn,且S5=a5+a6=25.
(1)求{an}的通项公式;
(2)若不等式2Sn+8n+27>(-1)nk(an+4)对所有的正整数n都成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题:“?x0>0,使2${\;}^{{x}_{0}}$>10”,这个命题的否定是(  )
A.?x>0,使2x>10B.?x>0,使2x≤10C.?x≤0,使2x≤10D.?x≤0,使2x>10

查看答案和解析>>

同步练习册答案