分析 利用向量的数量积化简求解即可.
解答 解:向量$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{π}{3}$,且$|{\overrightarrow b}$|=1,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{7}$,
可得:${\overrightarrow{a}}^{2}-4|\overrightarrow{a}||\overrightarrow{b}|cos<\overrightarrow{a},\overrightarrow{b}>+4{\overrightarrow{b}}^{2}$=7,
可得$|\overrightarrow{a}{|}^{2}-2|\overrightarrow{a}|-3=0$,
解得$|{\overrightarrow a}$|=3.
故答案为:3.
点评 本题考查向量的数量积的应用,向量的夹角的求法,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | S2016=2016,a2010<a7 | B. | S2016=2016,a2010>a7 | ||
C. | S2016=-2016,a2010<a7 | D. | S2016=-2016,a2010>a7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x>0,使2x>10 | B. | ?x>0,使2x≤10 | C. | ?x≤0,使2x≤10 | D. | ?x≤0,使2x>10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com