精英家教网 > 高中数学 > 题目详情
8.如图,以AB为直径的圆O与以N为圆心,半径为1的圆一个交点为Q,延长AB至点P,过点P作两圆的切线,分别切于M,N两点,已知AB=4.
(1)证明:AN=PN;
(2)求QN的长.

分析 (1)连接ON,BM,分别求出AN,PN,即可证明:AN=PN;
(2)确定cos∠ANQ=-$\frac{1}{4}$,由余弦定理求QN的长.

解答 (1)证明:连接ON,BM,则ON⊥PN,BM⊥PN.
∵ON=2,BM=1,OB=2,
∴∠PON=PBM=60°,
∴PN=2tan60°=2$\sqrt{3}$,
同时∠AON=120°,OA=ON=2,
∴AN=2$\sqrt{3}$,
∴AN=PN;
(2)解:∵△ABQ为直角三角形,
∴AQ=$\sqrt{A{B}^{2}-B{Q}^{2}}$=$\sqrt{15}$,cos∠ABQ=$\frac{1}{4}$.
∵A,B,Q,N四点共圆,
∴cos∠ANQ=-$\frac{1}{4}$.
由余弦定理可得15=12+QN2-2×$2\sqrt{3}QN×(-\frac{1}{4})$,
∴QN=$\frac{\sqrt{15}-\sqrt{3}}{2}$.

点评 本题考查圆中相等线段的证明,考查余弦定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.用数学归纳法证明:12+22+32+…+n2+…+22+12=$\frac{n(2{n}^{2}+1)}{3}$,第二步证明由n=k到n=k+1时,左边应加(  )
A.k2B.(k+1)2C.k2+(k+1)2+k2D.(k+1)2+k2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是4.1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.己知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax,x>0}\\{{2}^{x}-1,x≤0}\end{array}\right.$,若不等式f(x)+1≥0在x∈R上恒成立,则实数a的取值范围为(  )
A.(-∞,0]B.[-2,2]C.(-∞,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知D点在⊙O直径BC的延长线上,DA切⊙O于A点,DE是∠ADB的平分线,交AC于F点,交AB于E点.
(Ⅰ)求∠AEF的度数;
(Ⅱ)若AB=AD,求$\frac{AD}{BD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱柱ABC-A1B1C1中,面ABB1A为矩形,$AB=BC=1,A{A_1}=\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,BC⊥AB1
(1)证明:CD⊥AB1
(2)若$OC=\frac{{\sqrt{3}}}{3}$,求二面角A-BC-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,⊙O的弦AB、CD相交于E,过点A作⊙O的切线与DC的延长线交于点P.PA=6,AE=CD=EP=9.
(Ⅰ)求BE;
(Ⅱ)求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ln(x+a)(a∈R).
(Ⅰ)曲线y=f(x)在点(1,f(1))处的切线与直线x-2y+1=0平行,求a的值;
(Ⅱ)当a=0时,若函数g(x)=f(x)+$\frac{1}{2}$x2-mx(m≥$\frac{5}{2}$)的极值点x1,x2(x1<x2)恰好是函数h(x)=f(x)-cx2-bx的零点,求y=(x1-x2)h′($\frac{{x}_{1}+{x}_{2}}{2}$)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将一个五棱锥的每个顶点染上一种颜色,并使同一条棱的两个端点异色,如果只有4种颜色可供使用,那么不同染色方法总数为(  )
A.120B.125C.130D.135

查看答案和解析>>

同步练习册答案