精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),A,B是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PA、PB的斜率分别为k1、k2,若椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,则|k1•k2|=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{3}$

分析 设A(m,n),B(-m,-n),P(x,y),代入椭圆方程,两式相减,再由斜率公式,离心率公式,结合a,b,c的关系,可得k1•k2=-$\frac{1}{2}$,则答案可求.

解答 解:设A(m,n),B(-m,-n),P(x,y),
则有$\frac{{m}^{2}}{{a}^{2}}+\frac{{n}^{2}}{{b}^{2}}=1$,$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,
两式相减得,$\frac{{m}^{2}-{x}^{2}}{{a}^{2}}+\frac{{n}^{2}-{y}^{2}}{{b}^{2}}=0$,
则有$\frac{{n}^{2}-{y}^{2}}{{m}^{2}-{x}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$,
由于椭圆的离心率为$\frac{\sqrt{2}}{2}$,
则$\frac{c}{a}=\frac{\sqrt{2}}{2}$,即有$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}=\frac{1}{2}$,
即有-$\frac{{b}^{2}}{{a}^{2}}=-\frac{1}{2}$,∴$\frac{{n}^{2}-{y}^{2}}{{m}^{2}-{x}^{2}}=-\frac{1}{2}$,
k1•k2=$\frac{n-y}{m-x}•\frac{n+y}{m+x}$=$\frac{{n}^{2}-{y}^{2}}{{m}^{2}-{x}^{2}}$=-$\frac{1}{2}$,
∴|k1•k2|=$|-\frac{1}{2}|=\frac{1}{2}$.
故选:A.

点评 本题考查椭圆的性质,考查直线的斜率公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设A、B、C是三角形的三内角,且lgsinA=0,又sinB、sinC是关于x的方程4x2-2($\sqrt{3}$+1)x+k=0的两个根,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若ln2=m,ln3=n,则ln216=3m+3n(用m,n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,且a1=1,an+1=1+Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{$\frac{n}{{a}_{n}}$}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,椭圆C与x轴正半轴交于A点,与y轴正半轴交于B(0,2),且$\overrightarrow{BF}$•$\overrightarrow{BA}$=4$\sqrt{2}$+4,过点D(4,0)作直线l交椭圆于不同两点P,Q,则直线l的斜率的取值范围是(  )
A.-1<k<$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{2}}{2}$<k<1D.-1<k<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆中心E在坐标原点,焦点在坐标轴上,且经过A(-2,0)、B(2,0)、$C({1,\frac{3}{2}})$三点.
(1)求椭圆E的方程:
(2)若点D为椭圆E上不同于A、B的任意一点,F(-1,0),H(1,0),当△DFH内切圆的面积最大时,求内切圆圆心的坐标;
(3)若直线l:y=k(x-1)(k≠0)与椭圆E交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{6}$,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx-2与椭圆C交于A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn-1+kan=tan2-1,n≥2,n∈N*(其中k,t为常数).
(1)若k=$\frac{1}{2}$,t=$\frac{1}{4}$,数列{an}是等差数列,求a1的值;
(2)若数列{an}是等比数列,求证:k<t.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)在R上的导函数是f′(x),并且满足xf′(x)<0,若a=f(0.33),b=f(log2$\sqrt{3}$),c=f(log3$\sqrt{2}$),则(  )
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

同步练习册答案