【题目】某人射击一次命中7~10环的概率如下表
命中环数 | 7 | 8 | 9 | 10 |
命中概率 | 0.16 | 0.19 | 0.28 | 0.24 |
计算这名射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率.
【答案】
(1)解:某人射击一次命中7环、8环、9环、10环的事件分别记为A、B、C、D
则可得P(A)=0.16,P(B)=0.19,P(C)=0.28,P(D)=0.24
射中10环或9环即为事件D或C有一个发生,根据互斥事件的概率公式可得
P(C+D)=P(C)+P(D)=0.28+0.24=0.52
答:射中10环或9环的概率0.52
(2)解:至少射中7环即为事件A、B、C、D有一个发生,据互斥事件的概率公式可得
P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.16+0.19+0.28+0.24=0.87
答:至少射中7环的概率0.87
(3)解:射中环数不足8环,P=1﹣P(B+C+D)=1﹣0.71=0.29
答:射中环数不足8环的概率0.29
【解析】某人射击一次命中7环、8环、9环、10环的事件分别记为A、B、C、D,则可得P(A)=0.16,P(B)=0.19,P(C)=0.28,P(D)=0.24(1)事件D或C有一个发生,根据互斥事件的概率公式可得(2)事件A、B、C、D有一个发生,据互斥事件的概率公式可得(3)考虑“射中环数不足8环“的对立事件:利用对立事件的概率公式P(M)=1﹣P( )求解即可
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,a14+a15+a16=﹣54,a9=﹣36,Sn为其前n项和.
(1)求Sn的最小值,并求出相应的n值;
(2)求Tn=|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校有教职员工150人,其中高级职称15人,中级职称45人,一般职员90人,现在用分层抽样抽取30人,则样本中各职称人数分别为( )
A.5,10,15
B.3,9,18
C.3,10,17
D.5,9,16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1 , B1C1的中点,P是上底面的棱AD上的一点,AP= ,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线m与平面α相交但不垂直,则下列说法中,正确的是 ( )
A.在平面α内有且只有一条直线与直线m垂直
B.过直线m有且只有一个平面与平面α垂直
C.与直线m垂直的直线不可能与平面α平行
D.与直线m平行的平面不可能与平面α垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD= .
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求四棱锥P﹣ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为( )
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com