【题目】通过随机询问110名大学生是否爱好某项运动,得到列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由K2=,得K2=≈7.8.
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别有关”
B. 有99%以上的把握认为“爱好该项运动与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.
(1)设为参数,若,求直线的参数方程;
(2)已知直线与曲线交于,设,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|+|2x+3|.
(1)解不等式f(x)≥6;
(2)记f(x)的最小值是m,正实数a,b满足2ab+a+2b=m,求a+2b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C: ,过点的直线l的参数方程为: (t为参数),直线l与曲线C分别交于M、N两点.
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)若| PM |,| MN |,| PN |成等比数列,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )
A. 各月的平均最低气温都在0℃以上
B. 七月的平均温差比一月的平均温差大
C. 三月和十一月的平均最高气温基本相同
D. 平均最高气温高于20℃的月份有5个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数()的图象为, 关于点的对称的图象为, 对应的函数为.
(Ⅰ)求函数的解析式,并确定其定义域;
(Ⅱ)若直线与只有一个交点,求的值,并求出交点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“双十一”期间,某淘宝店主对其商品的上架时间(分钟)和销售量(件)的关系作了统计,得到如下数据:
经计算: , , , .
(1)从满足的数据中任取两个,求所得两个数据都满足的概率;
(2)该店主通过作散点图,发现上架时间与销售量线性相关,请你帮助店主求出上架时间与销售量的线性回归方程(保留三位小数),并预测商品上架1000分钟时的销售量.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com