精英家教网 > 高中数学 > 题目详情
4.比较下列各组中两个数的大小:
(1)1.5${\;}^{\frac{3}{5}}$,1.7${\;}^{\frac{3}{5}}$;
(2)0.71.5,0.61.5
(3)(-1.2)${\;}^{-\frac{2}{3}}$,(-1.25)${\;}^{-\frac{2}{3}}$.

分析 由幂函数的单调性,逐个题目比较可得.

解答 解:(1)∵幂函数y=x${\;}^{\frac{3}{5}}$在(0,+∞)单调递增,
∴1.5${\;}^{\frac{3}{5}}$<1.7${\;}^{\frac{3}{5}}$;
(2)∵幂函数y=x1.5在(0,+∞)单调递增,
∴0.71.5>0.61.5
(3))∵幂函数y=x${\;}^{-\frac{2}{3}}$在(-∞,0)单调递增,
∴(-1.2)${\;}^{-\frac{2}{3}}$>(-1.25)${\;}^{-\frac{2}{3}}$.

点评 本题考查幂函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.函数f(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}-1}{{x}^{2}-3x+2},x≠1}\\{-2,x=1}\end{array}\right.$,在x=1处是否连续?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)的图象是由两条线段组成的折线段(如图所示),则函数f(x)的表达式为f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,-2≤x≤0}\\{2x+1,0≤x≤1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知cos(π+α)=-$\frac{1}{2}$,计算sin(2π-α)-tan(α-3π)的值.
(2)求$\frac{tan(2π-α)•cos(2π-α)•sin(-α+\frac{3π}{2})}{cos(-α+π)•sin(-π+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知$\frac{3sinα-cosα}{2sinα+3cosα}$=$\frac{8}{9}$,求tanα的值;
(2)已知0<α<$\frac{π}{2}$,sinα=$\frac{4}{5}$,求$\frac{si{n}^{2}α+2sinαcosα}{co{s}^{2}α+1-2si{n}^{2}α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=$\sqrt{lo{g}_{3}sinx}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)在(-1,1)上是奇函数,且在[0,1)上单调递增,判断f(-$\frac{1}{π}$),f($\frac{1}{2}$),f($-\frac{1}{4}$)的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a∈{x|($\frac{1}{2}$)x-x=0},则f(x)=loga(4+3x-x2)的单调减区间为(-1,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线$\sqrt{3}$x-y-3=0的倾斜角是(  )
A.$\frac{π}{3}$B.$\frac{2}{3}$πC.$\frac{π}{6}$D.$\frac{4}{3}$π

查看答案和解析>>

同步练习册答案