【题目】函数在内有两个零点,则实数的取值范围是( )
A. B.
C. D.
【答案】D
【解析】
设,则函数等价为,条件转化为,进而转化为与有两个交点,利用函数的单调性和导数的几何意义,结合绝对值,合理分类讨论,即可求解,得到答案.
由题意,函数,
设,则,
因为,所以,
则函数等价于,
即等价为在上有两个零点,
即在有两个根,
设,则,即函数是奇函数,
则,即函数在上是增函数,
且,
当,若时,则函数只有一个零点,不满足条件;
若时,则,
设过原点的直线与相切,切点为,
由,则,
则切线方程为,
切线过原点,则,即,
则,
当,即切点为,此时切线的斜率为,
若,则,此时切线与相切,只有一个交点,不满足题意.
当直线过点时,,
此时直线,
要使得与由两个交点,则,
当时,时,,
由,得,当直线过点时,,
要使得与由两个交点,则,
综上或,
即实数的取值范围是 ,
故选D.
科目:高中数学 来源: 题型:
【题目】已知函数(a,).
(1)若,且在内有且只有一个零点,求a的值;
(2)若,且有三个不同零点,问是否存在实数a使得这三个零点成等差数列?若存在,求出a的值,若不存在,请说明理由;
(3)若,,试讨论是否存在,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在梯形ABCD中,AB//CD,AB=3,CD=6,过A,B分别作CD的垂线,垂足分别为E,F,已知DE=1,AE=3,将梯形ABCD沿AE,BF同侧折起,使得平面ADE⊥平面ABFE,平面ADE∥平面BCF,得到图2.
(1)证明:BE//平面ACD;
(2)求三棱锥C﹣AED的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:
(1)将上列联表补充完整,并请说明在犯错误的概率不超过0.10的前提下,认为支付方式与年龄是否有关?
(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.
(参考公式:(其中)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com