精英家教网 > 高中数学 > 题目详情
9.设A、B、C是三角形的三内角,且lgsinA=0,又sinB、sinC是关于x的方程4x2-2($\sqrt{3}$+1)x+k=0的两个根,求实数x的值.

分析 由lgsinA=0,解得:sinA=1,结合A的范围,可得A=$\frac{π}{2}$.由韦达定理及诱导公式可得sinB+cosB=$\frac{2(\sqrt{3}+1)}{4}$,两边平方解得:sin2B=$\frac{\sqrt{3}}{2}$,解得sinBsinC=$\frac{1}{2}$sin2B=$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$=$\frac{k}{4}$,即可解得k的值.

解答 解:∵lgsinA=0,解得:sinA=1,
∵A∈(0,π),
∴A=$\frac{π}{2}$.
∵sinB、sinC是关于x的方程4x2-2($\sqrt{3}$+1)x+k=0的两个根,
∴sinB+sinC=sinB+sin($\frac{π}{2}$-B)=sinB+cosB=$\frac{2(\sqrt{3}+1)}{4}$,两边平方可得:1+sin2B=$\frac{2(\sqrt{3}+1)}{4}$,解得:sin2B=$\frac{\sqrt{3}}{2}$,
∴sinBsinC=sinBsin($\frac{π}{2}$-B)=sinBcosB=$\frac{1}{2}$sin2B=$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$=$\frac{k}{4}$,解得:k=$\sqrt{3}$.

点评 本题主要考查了三角形内角和定理,同角三角函数关系式及诱导公式的应用,考查了韦达定理,倍角公式的应用及计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图所示,在正方体ABCD-A1B1C1D1中,E在A1D1上,且$\overrightarrow{{A}_{1}E}=2\overrightarrow{E{D}_{1}}$,F在对角线A1C上,且$\overrightarrow{{A}_{1}F}=\frac{2}{3}\overrightarrow{FC}$.求证:E,F,B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若P(x,y)点满足$\frac{{x}^{2}}{4}$+y2=1(y≥0)则$\frac{y-3}{x-4}$的范围是$[\frac{3-\sqrt{3}}{3},\frac{3}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.295是等差数列-5,-2,1,…的第(  )项.
A.99B.100C.101D.102

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sin($\frac{π}{2}$+α)=-$\frac{1}{3}$,α∈(π,$\frac{3π}{2}$),则sin(3π-α)的值为-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆上一点M满足△MF1F2的周长为4+2$\sqrt{3}$,过椭圆上顶点与右顶点的直线与直线4x-2y+5=0垂直.
(1)求椭圆C的方程;
(2)若直线l交椭圆C于A,B两点,以AB为直径的圆过原点,求弦长|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知角θ的终边在直线y=-2x上,求5sinθ-$\frac{2}{cosθ}$的值;
(2)化简$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)•cos(α-nπ)}$(n∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.作出下列函数一个周期的图象,并指出振幅、周期和初相.
(1)y=3sin($\frac{1}{2}$x+$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin(3x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),A,B是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PA、PB的斜率分别为k1、k2,若椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,则|k1•k2|=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

同步练习册答案