(本大题10分)求圆心在上,与轴相切,且被直线截得弦长为的圆的方程.
或。
【解析】
试题分析:根据圆心在上,可设圆心坐标为(),再根据它与轴相切,得.
圆心到直线的距离等于,根据弦长公式可得,从而求出a的值,写出圆的标准方程.
由已知设圆心为()--------1分
与轴相切则---------2分
圆心到直线的距离----------3分
弦长为得:-------6分
解得---------7分
圆心为(1,3)或(-1,-3),-----------8分
圆的方程为---------9分
或----------10.
考点:圆的标准方程.
点评:解本小题要利用点到直线的距离公式及圆的弦长公式:
点到直线的距离公式:则.
圆的弦长公式:弦长.
科目:高中数学 来源: 题型:
|
a |
b |
c |
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江苏省姜堰市二中学高三学情调查数学试卷 题型:解答题
(选做题)本大题包括A,B,C,D共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.
A. 选修4-1:几何证明选讲
如图,是边长为的正方形,以为圆心,为半径的圆弧与以为直径的半⊙O交于点,延长交于.
(1)求证:是的中点;(2)求线段的长.
B.选修4-2:矩阵与变换
已知矩阵A,其中,若点在矩阵A的变换下得到.
(1)求实数的值;
(2)矩阵A的特征值和特征向量.
C. 选修4-4:坐标系与参数方程
在极坐标系中,圆的极坐标方程为,
(1)过极点的一条直线与圆相交于,A两点,且∠,求的长.
(2)求过圆上一点,且与圆相切的直线的极坐标方程;
D.选修4-5:不等式选讲
已知实数满足,求的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:
|
已知某圆的极坐标方程为
(I)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;
(II)若点在该圆上,求的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题10分)选修4—4:坐标系与参数方程
已知某圆的极坐标方程为
(I)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;
(II)若点在该圆上,求的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com