【题目】2018年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表.
(Ⅰ)求的值,并作出这些数据的频率分布直方图;
(Ⅱ)假设每组数据组间是平均分布的,试估计该组数据的平均数;(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)现从第3、4、5组中用分层抽样的方法抽取6人参加校“中华诗词比赛”,经过比赛后从这6人中选拔2人组成该校代表队,求这2人来自不同组别的概率.
【答案】(Ⅰ)详见解析;(Ⅱ)12.25;(Ⅲ).
【解析】
分析:(Ⅰ)先计算出第三和第五组的频率,进而求出对应矩形的高,可得a,b的值;
(Ⅱ)累加各级频率与组中值的乘积,可估算平均数,
(Ⅲ)易得从第3、4、5组抽取的人数分别为3、2、1,设为,求出基本事件数,以及来自不同的组别的基本事件数,即可求出概率.
详解:
(Ⅰ),
频率分布直方图如下
(Ⅱ)估计该组数据的平均数
(Ⅲ)易得从第3、4、5组抽取的人数分别为3、2、1,设为,则
从该6人中选拔2人的基本事件有,共15种,其中来自不同的组别的基本事件有,共11种,所以这2人来自不同组别的概率为.(或:若这两人来自同组,则基本事件有共4种,所以这2人来自不同组别的概率为.)
科目:高中数学 来源: 题型:
【题目】如图所示的自动通风设施.该设施的下部是等腰梯形,其中为2米,梯形的高为1米, 为3米,上部是个半圆,固定点为的中点. 是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和平行.当位于下方和上方时,通风窗的形状均为矩形(阴影部分均不通风).
(1)设与之间的距离为(且)米,试将通风窗的通风面积(平方米)表示成关于的函数;
(2)当与之间的距离为多少米时,通风窗的通风面积取得最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为,中二等奖或三等奖的概率是.
(Ⅰ)求任取一张,中一等奖的概率;
(Ⅱ)若中一等奖或二等奖的概率是,求任取一张,中三等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,BC边上的高AM所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0与BC相交于点P,若点B的坐标为(1,2).
(1)分别求AB和BC所在直线的方程;
(2)求P点坐标和AC所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程=bx+a,
(3)试预测加工20个零件需要多少小时?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (k∈R).
(1)求函数y=f(x)的单调区间;
(2)若k∈N*,且当x∈(1,+∞)时,f(x)>0恒成立,求k的最大值.( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|,其中a>1
(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,曲线C1的参数方程为 (α为参数),曲线C2的参数方程为 (β为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和曲线C2的极坐标方程;
(2)已知射线l1:θ=α( <α< ),将射线l1顺时针方向旋转 得到l2:θ=α﹣ ,且射线l1与曲线C1交于两点,射线l2与曲线C2交于O,Q两点,求|OP||OQ|的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com