精英家教网 > 高中数学 > 题目详情

【题目】2018年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表.

(Ⅰ)求的值,并作出这些数据的频率分布直方图;

(Ⅱ)假设每组数据组间是平均分布的,试估计该组数据的平均数;(同一组中的数据用该组区间的中点值作代表);

(Ⅲ)现从第3、4、5组中用分层抽样的方法抽取6人参加校“中华诗词比赛”,经过比赛后从这6人中选拔2人组成该校代表队,求这2人来自不同组别的概率.

【答案】(Ⅰ)详见解析;(Ⅱ)12.25;(Ⅲ).

【解析】

分析:(Ⅰ)先计算出第三和第五组的频率,进而求出对应矩形的高,可得a,b的值;
(Ⅱ)累加各级频率与组中值的乘积,可估算平均数,

(Ⅲ)易得从第3、4、5组抽取的人数分别为3、2、1,设为,求出基本事件数,以及来自不同的组别的基本事件数,即可求出概率.

详解:

(Ⅰ)

频率分布直方图如下

(Ⅱ)估计该组数据的平均数

(Ⅲ)易得从第3、4、5组抽取的人数分别为3、2、1,设为,则

从该6人中选拔2人的基本事件有共15种,其中来自不同的组别的基本事件有共11种,所以这2人来自不同组别的概率为.(或:若这两人来自同组,则基本事件有共4种,所以这2人来自不同组别的概率为.)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的自动通风设施.该设施的下部是等腰梯形,其中为2米,梯形的高为1米, 为3米,上部是个半圆,固定点的中点. 是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和平行.当位于下方和上方时,通风窗的形状均为矩形(阴影部分均不通风).

(1)设之间的距离为)米,试将通风窗的通风面积(平方米)表示成关于的函数

(2)当之间的距离为多少米时,通风窗的通风面积取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为,中二等奖或三等奖的概率是.

(Ⅰ)求任取一张,中一等奖的概率;

(Ⅱ)若中一等奖或二等奖的概率是求任取一张中三等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABC,BC边上的高AM所在的直线方程为x-2y+1=0,A的平分线所在的直线方程为y=0BC相交于点P,若点B的坐标为(1,2).

(1)分别求ABBC所在直线的方程;

(2)P点坐标和AC所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x

2

3

4

5

加工的时间y小时

2.5

3

4

4.5

1在给定的坐标系中画出表中数据的散点图;

2求出y关于x的线性回归方程bxa

3试预测加工20个零件需要多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (k∈R).
(1)求函数y=f(x)的单调区间;
(2)若k∈N*,且当x∈(1,+∞)时,f(x)>0恒成立,求k的最大值.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,其中a>1
(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数在点点处的切线方程;

(2)当时,求函数的极值点和极值;

(3)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,曲线C1的参数方程为 (α为参数),曲线C2的参数方程为 (β为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和曲线C2的极坐标方程;
(2)已知射线l1:θ=α( <α< ),将射线l1顺时针方向旋转 得到l2:θ=α﹣ ,且射线l1与曲线C1交于两点,射线l2与曲线C2交于O,Q两点,求|OP||OQ|的最大值.

查看答案和解析>>

同步练习册答案