精英家教网 > 高中数学 > 题目详情
6.求证:4n>(n+3)•3n-1(n∈N*,且n>2)

分析 利用数学归纳法即可证明,当n=k+1≥3(k∈N*)时,注意放缩.

解答 证明:(1)当n=3时,左边=43=64,右边=6×32=54,∴左边>右边,不等式成立;
(2)假设n=k≥3(k∈N*)时成立,即4k>(k+3)•3k-1
则当n=k+1时,左边=4k+1=4•4k>4×(k+3)•3k-1
∵4(k+3)>3(k+4),
∴4×(k+3)•3k-1>3(k+4)•3k-1=(k+1+3)•3k+1-1
∴左边=4k+1>4×(k+4)•3k-1>(k+1+3)•3k+1-1=右边,
∴当n=k+1时,不等式成立.
综上(1)(2)可得:不等式:4n>(n+3)•3n-1(n∈N*,且n>2)成立.

点评 本题考查了数学归纳法证明不等式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.数列{an},{bn}中,a1=-4,b1=1,an+1=2an+bn(n∈N*),且数列$\left\{{\frac{a_n}{2^n}}\right\}$是等差数列.
(1)求{bn}的前n项Tn
(2)设数列{an}的前n项和为Sn,求使Sn最小的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2(sinx+m)2-3.
(1)若m=$\frac{1}{2}$,求f(x)的最小值;
(2)若m=2,求f(x)的最小值;
(3)若m∈R,求f(x)的最小值[用m表示,记为g(m)];
(4)若f(x)的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)是定义在R上的偶函数,且在[0,+∞)上是增函数,若f(a)≥f(2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.关于x的函数f(x)=tan(x+φ)有以下几种说法:
①对任意的φ,f(x)都是非奇非偶函数;
②f(x)的图象关于($\frac{π}{2}$-φ,0)对称;
③f(x)的图象关于(π-φ,0)对称;
④f(x)是以π为最小正周期的周期函数.
其中不正确的说法的序号是①.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知四边形ABCD为平行四边形,BC⊥平面ABE,AE⊥BE,M为线段AB的中点,N为线段DE的中点,P为线段AE的中点.求证:MN⊥EA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2x-$\frac{1}{{2}^{|x|}}$
(1)若f(x)=0,求x的值:
(2)若2t+mf(t)≥0对于t∈[1,2]恒成立.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=a-bcos3x(b<0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,则y=tan(4a-b)πx的周期是(  )
A.$\frac{π}{3}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数y=$\frac{cx+d}{ax+b}$(a≠0)的值域.

查看答案和解析>>

同步练习册答案