精英家教网 > 高中数学 > 题目详情

已知函数
(I)求曲线处的切线方程。
(II)设如果过点可作曲线的三条切线,证明:

(I) 
(II)通过研究函数的极大值和极小值分别为,由的单调性可知,
当极大值或极小值时,方程最多有一个实数根;
当极大值或极小值时,方程只有两个相异的实数根;
从而,方程才有三个相异的实数根.即可得证

解析试题分析:(I)求函数的导数:
曲线在点处的切线方程为 
(II)如果有一切线过点,则存在使得于是,若过点可作曲线的三条切线,则转化为方程有三个相异的实数根。
,则 
时,在此区间单调递增;
时,在此区间单调递减;
时,在此区间单调递增;
可求得函数的极大值和极小值分别为
的单调性可知,
当极大值或极小值时,方程最多有一个实数根;
当极大值或极小值时,方程只有两个相异的实数根;
依题意:方程才有三个相异的实数根.
即可得证
考点:本题主要考查导数的几何意义,应用导数研究函数的单调性及极值,方程根的讨论。
点评:典型题,本题属于导数应用中的基本问题,通过求确定处导函数值,得到切线的斜率,进一步可求切线方程。讨论方程的根,可通过讨论函数的单调性及极值情况,认识切线特征,得到解题目的。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.(1)求函数的单调区间;
(2)设函数.若至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数
(1)当时,判断在定义域上的单调性;
(2)求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数是实数集R上的奇函数,且在R上为增函数。
(Ⅰ)求的值;
(Ⅱ)求恒成立时的实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数
(1)求
(2)求过点A(0,16)的曲线的切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数(为自然对数的底数),).
(1)证明:
(2)当时,比较的大小,并说明理由;
(3)证明:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0, 为f(x)的导函数,求证:
(III)求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
(Ⅰ)已知 , 求
(Ⅱ)已知 , 求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设函数..
(Ⅰ)时,求的单调区间;
(Ⅱ)当时,设的最小值为,若恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案