精英家教网 > 高中数学 > 题目详情
10.已知数列{an}、{bn},其中,${a_n}=\frac{1}{{2({1+2+3+…+n})}}$,数列{bn}满足b1=2,bn+1=2bn
(1)求数列{an}、{bn}的通项公式;
(2)是否存在自然数m,使得对于任意n∈N*,n≥2,有$1+\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}<\frac{m-8}{4}$恒成立?若存在,求出m的最小值;
(3)若数列{cn}满足${c_n}=\left\{{\begin{array}{l}{\frac{1}{{n{a_n}}},n为奇数}\\{{b_n},n为偶数}\end{array}}\right.$,求数列{cn}的前n项和Tn

分析 (1)由已知条件利用等差数列前n项和公式和等比数列性质能求出数列{an}、{bn}的通项公式.
(2)设f(n)=1+$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+…+\frac{1}{{b}_{n}}$,由等比数列前n项和公式求出f(n)=2-$\frac{1}{{2}^{n}}$,$f(n+1)-f(n)=\frac{1}{{2}^{n+1}}$>0,从而f(n)<2,由此能求出m的最小值.
(3)由已知得数列{cn}满足${c_n}=\left\{{\begin{array}{l}{n+1,n为奇数}\\{{2^n},n为偶数}\end{array}}\right.$,由此利用分类讨论思想能求出数列{cn}的前n项和Tn

解答 解:(1)∵数列{an}、{bn},其中,${a_n}=\frac{1}{{2({1+2+3+…+n})}}$,
∴${a}_{n}=\frac{1}{2×\frac{n(n+1)}{2}}$=$\frac{1}{n(n+1)}$,
∵数列{bn}满足b1=2,bn+1=2bn
∴{bn}是首项为2,公比为2的等比数列,
∴bn=2n
(2)设f(n)=1+$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+…+\frac{1}{{b}_{n}}$,
则f(n)=$(\frac{1}{2})^{0}+(\frac{1}{2})+(\frac{1}{2})^{2}+…+(\frac{1}{2})^{n}$
=$\frac{1-(\frac{1}{2})^{n+1}}{1-\frac{1}{2}}$=2-$\frac{1}{{2}^{n}}$,
$f(n+1)-f(n)=\frac{1}{{2}^{n+1}}$>0,
∵f(n)在n∈N+,n≥2时单调递增,
∴f(n)<2,
∵存在自然数m,使得对于任意n∈N*,n≥2,有$1+\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}<\frac{m-8}{4}$恒成立,
∴$\frac{m-8}{4}≥2,m≥16$,
解得m的最小值为16.
(3)∵数列{cn}满足${c_n}=\left\{{\begin{array}{l}{\frac{1}{{n{a_n}}},n为奇数}\\{{b_n},n为偶数}\end{array}}\right.$,
∴${c_n}=\left\{{\begin{array}{l}{n+1,n为奇数}\\{{2^n},n为偶数}\end{array}}\right.$,
当n为奇数时,${T_n}=(\frac{1}{a_1}+\frac{1}{{3{a_3}}}+…+\frac{1}{{n{a_n}}})+({b_2}+{b_4}+…+{b_{n-1}})$
=[2+4+…+(n+1)]+(22+24+…+2n-1
=$\frac{2+n+1}{2}•\frac{n+1}{2}+\frac{{4(1-{4^{\frac{n-1}{2}}})}}{1-4}$
=$\frac{{{n^2}+4n+3}}{4}+\frac{4}{3}({2^{n-1}}-1)$,
当n为偶数时,${T_n}=[\frac{1}{a_1}+\frac{1}{{3{a_3}}}+…+\frac{1}{{(n-1){a_{n-1}}}}]+({b_2}+{b_4}+…+{b_n})$
=(2+4+…+n)+(22+24+…+2n
=$\frac{2+n}{2}•\frac{n}{2}+\frac{{4(1-{4^{\frac{n}{2}}})}}{1-4}$=$\frac{{{n^2}+2n}}{4}+\frac{4}{3}({2^n}-1)$.
因此${T_n}=\left\{{\begin{array}{l}{\frac{{{n^2}+4n+3}}{4}+\frac{4}{3}({2^{n-1}}-1),n为奇数}\\{\frac{{{n^2}+2n}}{4}+\frac{4}{3}({2^n}-1),n为偶数}\end{array}}\right.$.

点评 本题考查数列的通项公式的求法,考查满足条件的实数的最小值的求法,考查数列的前n项和的求法,解题时要认真审题,注意等差数列和等比数列的性质的合理运用,注意分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知实数x、y满足方程x2+y2-4x+1=0,$\frac{y}{x-5}$的最大值$\frac{\sqrt{2}}{2}$和最小值-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线的斜截式方程是y=$\sqrt{3}$x+1,则此直线的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax+\frac{a}{4},(x<1)}\\{{{a}^{x},x≥1)}^{\;}}\end{array}\right.$若y=f(x)在(-∞,+∞)上单调递增,则实数a的取值范围是(  )
A.[2,4]B.(2,4)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{xlnx}{x+1}$和g(x)=m(x-1),m∈R.
(Ⅰ)m=1时,求方程f(x)=g(x)的实根;
(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤g(x)恒成立,求m的取值范围;
(Ⅲ)求证:$\frac{4×1}{{4×{1^2}-1}}+\frac{4×2}{{4×{2^2}-1}}+\frac{4×3}{{4×{3^2}-1}}+…+\frac{4×1007}{{4×{{1007}^2}-1}}>ln2015$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设${x^5}={a_0}+{a_1}(2-x)+{a_2}{(2-x)^2}+…+{a_5}{(2-x)^5}$,那么$\frac{{{a_0}+{a_2}+{a_4}}}{{{a_1}+a{\;}_3}}$的值为(  )
A.$-\frac{122}{121}$B.$-\frac{61}{60}$C.-$\frac{244}{241}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=1+\frac{|x|-x}{2}({-2<x≤2})$.
(1)画出该函数的图象;
(2)写出该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=cos$\frac{2π}{3}cos(\frac{π}{2}+2x)$,则函数f(x)满足(  )
A.f(x)的最小正周期是2πB.当x∈$[-\frac{π}{6},\frac{π}{3}]$时,f(x)的值域为$[-\frac{{\sqrt{3}}}{4},\frac{{\sqrt{3}}}{4}]$
C.f(x)的图象关于直线x=$\frac{3π}{4}$对称D.若x1≠x2,则f(x1)≠f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知扇形的周长为16cm,圆心角为2rad,求该扇形的面积.

查看答案和解析>>

同步练习册答案