精英家教网 > 高中数学 > 题目详情

【题目】对任意x∈[﹣1,1],不等式﹣4≤x3+3|x﹣a|≤4恒成立,则实数a的取值范围为(
A.[﹣ ]
B.[﹣ ]
C.[0, ]
D.[0,1]

【答案】C
【解析】解:由题意可得 ,即当x∈[﹣1,1]时,
y=|x﹣a|的图象应在y=﹣ 的图象和y=﹣ + 的图象之间.
当x∈[﹣1,1]时,y=f(x)=|x﹣a|的图象在y=﹣ 的上方,显然成立,
故只要当x∈[﹣1,1]时,y=f(x)=|x﹣a|的图象在y=﹣ + 的下方,或在y=﹣ + 上,
故有f(﹣1)=|1+a|≤ + ,且f(1)=|1﹣a|≤﹣ +
即|a+1|≤ ,且|a﹣1|≤1,
求得0≤a≤
故选:C.

【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:x>1, x>0,命题q:x∈R,x3>3x , 则下列命题为真命题的是(
A.p∧q
B.p∨(¬q)
C.p∧(¬q)
D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为, 倾斜角为的直线经过椭圆的右焦点且与圆相切.

(1)求椭圆 的方程;

(2)若直线与圆相切于点, 且交椭圆两点,射线于椭圆交于点,设的面积与的面积分别为.

①求的最大值; ②当取得最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 底面底面为正方形 分别是的中点.

(Ⅰ)求证:

(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】31届夏季奥林匹克运动会于201685日至821日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).

30届伦敦

29届北京

28届雅典

27届悉尼

26届亚特兰大

中国

38

51

32

28

16

俄罗斯

24

23

27

32

26

(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);

(2)如表是近五届奥运会中国代表团获得的金牌数之和(从第26届算起,不包括之前已获得的金牌数)随时间变化的数据:

时间(届)

26

27

28

29

30

金牌数之和(枚)

16

44

76

127

165

作出散点图如图:

由图可以看出,金牌数之和与时间之间存在线性相关关系,请求出关于的线性回归方程,并预测从第26届到第32届奥运会时中国代表团获得的金牌数之和为多少?

附:对于一组数据,…, ,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABC A 1B1C1的侧棱长和底面边长均为2,DBC 的中点.

(1) 求证:AD⊥平面B1BC C1

(2) 求证:A 1B//平面ADC1

(3) 求三棱锥C1 ADB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】)已知三个点,圆的外接圆.

)求圆的方程.

)设直线,与圆交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分)如图,在三棱锥中,底面为等边三角形,的中点.

(Ⅰ)求证:

(Ⅱ)判断在线段上是否存在点(与点不重合),使得为直角三角形?若存在,试找出一个点,并求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=(
A.7
B.5
C.﹣5
D.﹣7

查看答案和解析>>

同步练习册答案