精英家教网 > 高中数学 > 题目详情
19.已知:如图,在△ABC和△ABD中,∠C=∠D,求证:A,B,C,D四点共圆

分析 设圆O为△ABC的外接圆,结合圆周角定理和三角形外角大于不相邻的内角,利用反证法,可得D也在圆上,进而得到结论.

解答 证明:设圆O为△ABC的外接圆,
若D在圆O外,令AD交圆O于点E,

则∠C=∠AEB>∠D,
这与已知中∠C=∠D矛盾,
若D在圆O内,令AD延长线交圆O于点E,

则∠C=∠AEB<∠D,
这与已知中∠C=∠D矛盾,
故D在圆O上,
即A,B,C,D四点共圆.

点评 本题考查的知识点是四点共圆的证明,熟练掌握反证法的证明过程,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图函数y=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}$)图象的一部分,则f($\frac{π}{4}$)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.现有一段长为18m的铁丝,要把它围成一个底面一边长为另一边长2倍的长方体形状的框架,当长方体体积最大时,底面的较短边长是(  )
A.1 mB.1.5 mC.0.75 mD.0.5 m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-ax-1.
(1)讨论f(x)的单调性;
(2)若f(x)在R上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.P(1,1)是椭圆$\frac{x^2}{3}$+$\frac{y^2}{2}$=1内一点,过P的直线l交椭圆于A、B两点.
(1)若P是AB的中点,求直线l的方程;
(2)若以AB为直径的圆经过原点,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,为使方盒的容积最大,则x的值是(  )
A.$\frac{a}{3}$B.$\frac{a}{4}$C.$\frac{a}{5}$D.$\frac{a}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设m、n是两条不同的直线,α、β是两个不重合的平面,则下列命题中正确的是(  )
A.若m∥α,m∥n,则n∥αB.若m⊥α,n⊥β,则m⊥nC.若m⊥α,m∥β,则α⊥βD.若α⊥β,n?α,则n⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)定义如表,数列{xn}满足x1=2,且对任意的自然数均有xn+1=f(xn),则x2011=4.
x12345
f(x)41352

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x2-5x+6<0},B={x||x|≤2},则∁RA∩B=(  )
A.AB.CRAC.BD.CRB

查看答案和解析>>

同步练习册答案