精英家教网 > 高中数学 > 题目详情
8.sin(-1665°)的值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

分析 直接利用诱导公式以及特殊角的三角函数求解即可.

解答 解:sin(-1665°)=sin(-1800°+135°)=sin135°=$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查诱导公式以及特殊角的三角函数化简求值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)满足:f(-x)=f(x),且f(x+2)=f(x),当x∈[-1,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间[-1,5]内函数F(x)=f(x)-logax有三个零点,则实数a的取值范围为(  )
A.($\frac{1}{2}$,2)B.(1,5)C.(2,3)D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)
(1)证明:函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定义域R上为增函数;
(2)若函数g(x)=f(x)+2x-2-x满足g(3a-1)+g(a-3)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=7,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=5或9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.底面是正三角形且侧棱和底面垂直的三棱柱ABC-A1B1C1的侧棱长为3,底面边长为1,沿侧面从A点经过棱BB1上的M点再经过棱CC1上的N点到A1点.当所经路径AM-MN-NA1最短时,AM与A1N所成的角的余弦值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在矩形ABCD中,AB=1,BC=2,E为BC的中点,点F在DC边上,则$\overrightarrow{AE}•\overrightarrow{AF}$的最大值为(  )
A.3B.4C.5D.与F点的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点P是底边长为2$\sqrt{3}$,高为2的正三棱柱表面上的动点,Q是该棱柱内切球表面上的动点,则|PQ|的取值范围是(  )
A.[0,$\sqrt{3}+1$]B.[0,$\sqrt{5}+1$]C.[0,3]D.[1,$\sqrt{5}+1$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知关于x的二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1表示焦点在x轴上且离心率小于$\frac{\sqrt{3}}{2}$的椭圆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,x2-x+1>0”的否定是(  )
A.?x0∈R  x02-x0+1<0B.?x0∈R  x02-x0+1≤0
C.?x∈R  x2-x+1<0D.?x∈R  x2-x+1≤0

查看答案和解析>>

同步练习册答案