精英家教网 > 高中数学 > 题目详情
18.函数y=a2-x+2(a>0,a≠1)的图象恒过一定点是(2,3).

分析 根据a0=1恒成立,可得:当x=2时,a2-x+2=3恒成立,进而得到答案.

解答 解:∵a0=1恒成立,
故当x=2时,a2-x+2=3恒成立,
即函数y=a2-x+2(a>0,a≠1)的图象恒过定点(2,3),
故答案为:(2,3).

点评 本题考查的知识点是函数恒成立问题,指数函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设x,y满足约束条件$\left\{\begin{array}{l}{x+y-7≤0}\\{x-3y+1≤0}\\{3x-y-5≥0}\end{array}\right.$,则z=3x-2y的最大值为(  )
A.1B.4C.8D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=1,AB=2(如图①),将△ADC沿AC折起,使D到D′,构成三棱锥D′-ABC,如图②所示.
(1)若BD′=$\sqrt{3}$,求证:面ACD′⊥面BCD′;
(2)若二面角D′-AC-B为60°,求三棱锥D′-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知3x2+2y2≤6,求2x+y的最大值
(2)求不等式|x-1|+|x+2|<5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设定义在R上的函数f(x)是最小正周期为$\frac{π}{2}$的偶函数,f′(x)是f(x)的导函数,当$x∈[0,\frac{π}{2}]$时,0<f(x)<1,当x∈(0,$\frac{π}{2}$)且x≠$\frac{π}{4}$时,(x-$\frac{π}{4}$)f'(x)<0,则方程f(x)=cos2x在[-2π,2π]上的根的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=x4+4x3+ax2-4x+1的图象恒在x轴上方,则实数a的取值范围是(  )
A.(2,+∞)B.(1,+∞)C.($\frac{\sqrt{3}-1}{2}$,+∞)D.($\frac{\sqrt{2}-1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若不同的两点A,B到平面α的距离相等,则下列命题中一定正确的是(  )
A.A,B两点在平面α的同侧B.A,B两点在平面α的异侧
C.过A,B两点必有垂直于平面α的平面D.过A,B两点必有平行于平面α的平面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线f(x)=x2-3x+1在点(1,-1)处的切线方程为(  )
A.y=-x-1B.y=xC.y=-xD.y=x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知回归直线方程是:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,假设学生在高中时数学成绩和物理成绩是线性相关的,若5个学生在高一下学期某次考试中数学成绩x(总分150分)和物理成绩y(总分100分)如表格所示:
(Ⅰ)求这次高一数学成绩和物理成绩间的线性回归方程;
(Ⅱ)若小红这次考试的物理成绩是93分,你估计她的数学成绩是多少分呢?(精确到0.1).
($\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

同步练习册答案