精英家教网 > 高中数学 > 题目详情

【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选出了三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.某学校为了了解高一年级200名学生选考科目的意向,随机选取20名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有5

5

5

2

1

2

0

选考方案待确定的有7

6

4

3

2

4

2

女生

选考方案确定的有6

3

5

2

3

3

2

选考方案待确定的有2

1

2

1

0

1

1

(1)在选考方案确定的男生中,同时选考物理、化学、生物的人数有多少?

(2)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.

【答案】(1)2人;(2)

【解析】

(1)由表格可直接发现选考方案确定的男生中同时选择物理、化学和生物的人数.
(2)已确定选考科目的男生共5.其中有2人选择物理、化学和生物,记为;有1人选择物理、化学和历史,记为;有2人选择物理、化学和地理,记为,由此利用列举法能求出任取2名男生,这2名学生选考科目完全相同的概率.

(1)选考方案确定的男生中,同时选择物理、化学和生物的人数是2.

(2)由数据可知,已确定选考科目的男生共5.其中有2人选择物理、化学和生物,记为;有1人选择物理、化学和历史,记为;有2人选择物理、化学和地理,记为.

从已确定选考科目的男生中任选2人,有,共10种选法.

两位学生选考科目完全相同的选法种数有,共2种选法.

设事件:从已确定选考科目的男生中任选出2人,这两位学生选考科目完全相同.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆C过点

(1)求椭圆C的标准方程;

(2)过椭圆C的右焦点的直线l与椭圆C交于AB两点,且与圆:交于EF两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在几何体中,底面为菱形,相交于点,四边形为直角梯形,,面.

(1)证明:面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

(1)若的充分条件,求的取值范围.

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,对于直线和点,记,若,则称点,被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点,被直线l分隔,则称直线l为曲线C的一条分隔线.

1)求证:点被直线分隔;

2)若直线是曲线的分隔线,求实数的取值范围;

3)动点M到点的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为曲线E的分隔线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分別与圆O:交于点A,B,与圆M:(x﹣2)2+(y﹣1)2=1交于点C,D.

(1)若AB=,求CD的长;

(2)若CD中点为E,求△ABE面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点到点的距离与点到直线的距离相等.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率为1的直线与曲线相交于不同的两点为坐标原点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,分别为棱的中点.

1)在上确定点M,使平面,并说明理由。

2)若侧面侧面,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线y=5,:

(1)曲线上与直线y=2x-4平行的切线方程.

(2)求过点P(0,5),且与曲线相切的切线方程.

查看答案和解析>>

同步练习册答案