精英家教网 > 高中数学 > 题目详情
已知定义在R上的奇函数f(x)的图象经过点(2,2),且当x∈(0,+∞)时,f(x)=loga(x+2).
(1)求a的值;
(2)求函数f(x)的解析式.
(1)∵函数f(x)的图象经过点(2,2),
∴f(2)=loga(2+2)=2,∴a=2.
(2)∵函数f(x)为奇函数,∴f(0)=0.
∵当x∈(0,+∞)时,f(x)=loga(x+2),
则当x∈(-∞,0)时,-x∈(0,+∞),
∴f(x)=-f(-x)=-log2(2-x).
综上可得,f(x)=
log2(x+2),x>0
0,x=0
-log2(2-x),x<0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,且
(1)求实数c的值;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2
(1)证明f(x)为奇函数.
(2)证明f(x)在R上是减函数.
(3)若f(2x+5)+f(6-7x)>4,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x2-2|x|-1(-3≤x≤3)
(1)证明f(x)是偶函数;
(2)指出函数f(x)的单调增区间;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)
(  )
A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数
B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数
C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数
D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)为定义在R上的奇函数,当x∈(0,1)时,f(x)=
2x
2x+1

(1)求函数f(x)在(-1,1)上的解析式;
(2)判断函数f(x)在(0,1)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)是定义在(-2,2)上的减函数,满足:f(-x)=-f(x),且f(m-1)+f(2m-1)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x>0时,f(x)=(
1
2
)x+1
,则f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
px2+2
x-q
,对定义域中的所有x都满足f(x)+f(-x)=0,f(2)=5
(1)求实数p,q的值;
(2)判断函数f(x)在[1,+∞)上的单调性,并证明.

查看答案和解析>>

同步练习册答案