精英家教网 > 高中数学 > 题目详情

【题目】【2017届广东省深圳市高三下学期第一次调研考试(一模)数学理】已知函数为自然对数的底数.

(1)求曲线处的切线方程;

(2)关于的不等式上恒成立,求实数的值;

(3)关于的方程有两个实根,求证:

【答案】(1);(2) (3)见解析.

【解析】(1)对函数求导得

∴曲线处的切线方程为,即

(2)记,其中

由题意知上恒成立,下求函数的最小值,

求导得

,得

变化时,变化情况列表如下:

-

0

+

极小值

,则

,得

变化时,变化情况列表如下:

1

+

0

-

极大值

当且仅当时取等号,

,从而得到

(3)先证

,则

,得

变化时,变化情况列表如下:

-

0

+

极小值

恒成立,即

记直线分别与交于

不妨设,则

从而,当且仅当时取等号,

由(2)知,,则

从而,当且仅当时取等号,

因等号成立的条件不能同时满足,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入的数据如下表:

x

x1

x2

x3

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

-2

0

(1)求x1,x2,x3的值及函数f(x)的表达式;

(2)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,求函数y=f(x)·g(x)在区间的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线方程为,求的单调区间;

2)若时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的公差,且,记

(1)用分别表示,并猜想

(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的动直线与圆 交于M,N两点.

(Ⅰ)设线段MN的中点为P,求点P的轨迹方程;

(Ⅱ)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016年高考四川理数】设函数f(x)=ax2-a-lnx,其中a R.

)讨论f(x)的单调性;

)确定a的所有可能取值,使得在区间(1+)内恒成立(e=2.718为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD-A1B1C1D1中,P,M,N分别为棱DD1,AB,BC的中点.

(1)求二面角B1-MN-B的正切值.

(2)求证:PB⊥平面MNB1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用( )

A. 一次函数 B. 二次函数 C. 指数型函数 D. 对数型函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】社会调查人员希望从对人群的随机抽样调查中得到对他们所提问题诚实的回答但是被采访者常常不愿意如实做出应答.

1965Stanley·L.Warner发明了一种应用概率知识来消除这种不愿意情绪的方法.Warner的随机化应答方法要求人们随机地回答所提问题中的一个而不必告诉采访者回答的是哪个问题两个问题中有一个是敏感的或者是令人为难的另一个是无关紧要的这样应答者将乐意如实地回答问题因为只有他知道自己回答的是哪个问题.

假如在调查运动员服用兴奋剂情况的时候无关紧要的问题是:你的身份证号码的尾数是奇数吗;敏感的问题是:你服用过兴奋剂吗.然后要求被调查的运动员掷一枚硬币如果出现正面就回答第一个问题否则回答第二个问题.

例如我们把这个方法用于200个被调查的运动员得到56的回答,请你估计这群运动员中大约有百分之几的人服用过兴奋剂.

查看答案和解析>>

同步练习册答案